Учебник для 6 класса

Математика

       

22. Прямая и обратная пропорциональные зависимости

Если станок с числовым программным управлением за 2 ч изготовляет 28 деталей, то за вдвое большее время, т. е. за 4 ч, он изготовит вдвое больше таких деталей, т. е. 28 • 2 = 56 деталей. Во сколько раз больше времени будет работать станок, во столько раз больше деталей он изготовит. Значит, равны отношения 4 : 2 и 56 : 28. Следовательно, верна пропорция 4 : 2 = 56 : 28. Такие величины, как время работы станка и число изготовленных деталей, называют прямо пропорциональными величинами.

Две величины называют прямо пропорциональными, если при увеличении (уменьшении) одной из них в несколько раз другая увеличивается (уменьшается) во столько же раз.

Если две величины прямо пропорциональны, то отношения соответствующих значений этих величин равны.

Пусть путь из города А в город В поезд со скоростью 40 км/ч проходит за 12 ч. Если скорость движения увеличить вдвое, т. е. сделать её равной 80 км/ч, то на этот же путь поезд затратит вдвое меньше времени, т. е. 6 ч. Во сколько раз увеличится скорость движения, во столько же раз уменьшится время движения. В этом случае отношение 80 : 40 будет равно не отношению 6 : 12, а обратному отношению 12 : 6. Следовательно, верна пропорция 80 : 40 = 12 : 6. Такие величины, как скорость и время, называют обратно пропорциональными величинами.

Две величины называют обратно пропорциональными, если при увеличении (уменьшении) одной из них в несколько раз другая уменьшается (увеличивается) во столько же раз.

Если величины обратно пропорциональны, то отношение значений одной величины равно обратному отношению соответствующих значений другой величины.

Не всякие две величины являются прямо пропорциональными или обратно пропорциональными. Например, рост ребёнка увеличивается при увеличении его возраста, но эти величины не являются пропорциональными, так как при удвоении возраста рост ребёнка не удваивается.

Задачи на пропорциональные величины можно решить с помощью пропорции.

Задача 1. За 3,2 кг товара заплатили 115,2 р. Сколько следует заплатить за 1,5 кг этого товара?

Решение. Запишем кратко условие задачи в виде таблицы, обозначив буквой х стоимость (в рублях) 1,5 кг этого товара.

Запись будет иметь следующий вид:

Зависимость между количеством товара и стоимостью покупки прямо пропорциональна, так как если купить товара в несколько раз больше, то и стоимость покупки увеличится во столько же раз. Условно обозначим такую зависимость одинаково направленными стрелками.

Запишем пропорцию: .

Теперь найдём неизвестный член пропорции:

Ответ: 54 р.

Задача 2. Два прямоугольника имеют одинаковую площадь. Длина первого прямоугольника 3,6 м, а ширина 2,4 м. Длина второго прямоугольника 4,8 м. Найдите ширину второго прямоугольника.

Решение. Обозначив буквой х ширину (в метрах) второго прямоугольника, запишем кратко условие задачи:

Зависимость между шириной и длиной при одном и том же значении площади прямоугольника обратно пропорциональная, так как если увеличить длину прямоугольника в несколько раз, то надо ширину во столько же раз уменьшить. Условно обозначим такую зависимость противоположно направленными стрелками.

Запишем пропорцию:

Теперь найдём неизвестный член пропорции:

Ответ: 1,8 м.

Вопросы для самопроверки

  • Какие величины называют прямо пропорциональными? Что можно сказать об отношениях соответствующих значений таких величин?
  • Приведите примеры прямо пропорциональных величин.
  • Какие величины называют обратно пропорциональными? Что можно сказать об отношениях соответствующих значений таких величин?
  • Приведите примеры обратно пропорциональных величин.
  • Приведите примеры величин, у которых зависимость не является ни прямо, ни обратно пропорциональной.

Выполните упражнения

782. Определите, является ли прямо пропорциональной, обратно пропорциональной или не является пропорциональной зависимость между величинами:

  • а) путём, пройденным автомашиной с постоянной скоростью, и временем её движения;
  • б) стоимостью товара, купленного по одной цене, и его количеством;
  • в) площадью квадрата и длиной его стороны;
  • г) массой стального бруска и его объёмом;
  • д) числом рабочих, выполняющих с одинаковой производительностью труда некоторую работу, и временем выполнения этой работы;
  • е) стоимостью товара и его количеством, купленным на определённую сумму денег;
  • ж) возрастом человека и размером его обуви;
  • з) объёмом куба и длиной его ребра;
  • и) периметром квадрата и длиной его стороны;
  • к) дробью и её знаменателем, если числитель не изменяется;
  • л) дробью и её числителем, если знаменатель не изменяется.

Задачи № 783 — 794 решите, составив пропорцию.

783. Стальной шарик объёмом б см3 имеет массу 46,8 г. Какова масса шарика из той же стали, если его объём 2,5 см3?

784. Из 21 кг хлопкового семени получили 5,1 кг масла. Сколько масла получится из 7 кг хлопкового семени?

785. Для строительства стадиона 5 бульдозеров расчистили площадку за 210 мин. За какое время 7 бульдозеров расчистили бы эту площадку?

786. Для перевозки груза потребовалось 24 машины грузоподъёмностью 7,5 т. Сколько нужно машин грузоподъёмностью 4,5 т, чтобы перевезти тот же груз?

787. Для определения всхожести семян посеяли горох. Из 200 посеянных горошин взошло 170. Какой процент горошин дал всходы (процент всхожести)?

788. Весной при проведении работ по озеленению города на улице посадили липы. Принялось 95% всех посаженных лип. Сколько посадили лип, если принялось 57 лип?

789. В лыжной секции занимаются 80 учащихся. Среди них 32 девочки. Какой процент участников секции составляют девочки и какой — мальчики?

790. Завод должен был за месяц по плану выплавить 980 т стали. Но план выполнили на 115%. Сколько тонн стали выплавил завод?

791. За 8 месяцев рабочий выполнил 96% годового плана. Сколько процентов годового плана выполнит рабочий за 12 месяцев, если будет работать с той же производительностью?

792. За три дня было убрано 16,5% всей свёклы. Сколько потребуется дней, чтобы убрать 60,5% всей свёклы, если работать с той же производительностью?

793. В железной руде на 7 частей железа приходится 3 части примесей. Сколько тонн примесей в руде, которая содержит 73,5 т железа?

794. Для приготовления борща на каждые 100 г мяса надо взять 60 г свёклы. Сколько свёклы надо взять на 650 г мяса?

795. Вычислите устно:

796. Представьте в виде суммы двух дробей с числителем 1 каждую из следующих дробей: .

797. Из чисел 3, 7, 9 и 21 составьте две верные пропорции.

798. Средние члены пропорции 6 и 10. Какими могут быть крайние члены? Приведите примеры.

799. При каком значении х верна пропорция:

800. Найдите отношение:

  • а) 2 мин к 10 с;
  • б) 0,3 м2 к 0,1 дм2;
  • в) 0,1 кг к 0,1 г;
  • г) 4 ч к 1 сут;
  • д) 3 дм3 к 0,6 м3.

801. Где на координатном луче должно быть расположено число с, чтобы была верна пропорция (рис. 34)?

Рис. 34

802. Развивайте свою память! Закройте таблицу листом бумаги. На несколько секунд откройте первую строку и затем, вновь закрыв её, постарайтесь повторить или записать три числа этой строки. Если вы верно воспроизвели все числа, переходите ко второй строке таблицы. Если в какой-либо строке допущена ошибка, сами напишите несколько наборов из такого же, как в строке, количества двузначных чисел и тренируйтесь в их запоминании. Если вы можете без ошибок воспроизвести не менее пяти двузначных чисел, у вас хорошая память.

803. Решите уравнение:

804. Можно ли составить верную пропорцию из следующих чисел:

805. Из равенства произведений 3 • 24 = 8 • 9 составьте три верные пропорции.

806. Длина отрезка АВ равна 8 дм, а длина отрезка CD равна 2 см. Найдите отношение длин отрезков АВ и CD. Какую часть длины отрезка АВ составляет длина отрезка CD?

807. В санатории 460 отдыхающих, из которых 70% взрослые, а остальные — дети. Сколько детей отдыхало в санатории?

808. Найдите значение выражения:

809. Решите задачу:

  1. При обработке детали из отливки массой 40 кг в отходы ушло 3,2 кг. Какой процент составляет масса детали от массы отливки?
  2. При сортировке зерна из 1750 кг в отходы ушло 105 кг. Какой процент зерна остался?

810. Найдите значение выражения:

  1. 6,0008 : 2,6 + 4,23 • 0,4;
  2. 2,91 • 1,2 + 12,6288 : 3,6.

811. Из 20 кг яблок получается 16 кг яблочного пюре. Сколько яблочного пюре получится из 45 кг яблок?

812. Трое маляров могут закончить работу за 5 дней. Для ускорения работы добавили ещё двух маляров. За какое время они закончат работу, если все маляры работают с одинаковой производительностью?

813. Бетонная плита объёмом 2,5 м3 имеет массу 4,75 т. Каков объём плиты из такого же бетона, если её масса 6,65 т?

814. В сахарной свёкле содержится 18,5% сахара. Сколько сахара содержится в 38,5 т сахарной свёклы? Ответ округлите до десятых долей тонны.

815. В семенах подсолнечника нового сорта содержится 49,5% масла. Сколько килограммов таких семян надо взять, чтобы в них содержалось 29,7 кг масла?

816. В 80 кг картофеля содержится 14 кг крахмала. Найдите процентное содержание крахмала в таком картофеле.

817. В семенах льна содержится 47% масла. Сколько масла содержится в 80 кг семян льна?

818. Рис содержит 75% крахмала, а ячмень — 60%. Сколько надо взять ячменя, чтобы в нём содержалось столько же крахмала, сколько его содержится в 5 кг риса?

819. Найдите значение выражения:

  • а) 203,81 : (141 - 136,42) + 38,4 : 0,75;
  • б) 96 : 7,5 + 288,51 : (80 - 76,74).

Рейтинг@Mail.ru