Учебное пособие

ОХРАНА ТРУДА

       

Методы защиты от электромагнитных полей

Общими методами защиты от электромагнитных полей и излучений являются следующие:

  • уменьшение мощности генерирования поля и излучения непосредственно в его источнике, в частности за счет применения поглотителей электромагнитной энергии;
  • увеличение расстояния от источника излучения;
  • уменьшение времени пребывания в поле и под воздействием излучения;
  • экранирование излучения;
  • применение СИЗ.

На рис. 68 приведена классификация методов и средств защиты от переменных полей и излучений.

Рис. 68. Классификация методов и средств защиты от переменных электромагнитных полей и излучений

Излучающие антенны необходимо поднимать на максимально возможную высоту и не допускать направления луча на рабочие места и территорию предприятия.

Для защиты от электрических полей промышленной частоты необходимо увеличивать высоту подвеса фазных проводов линий электропередач, уменьшать расстояние между ними и т.д. Путем правильного выбора геометрических параметров можно снизить напряженность электрического поля вблизи ЛЭП в 1,6...1,8 раза.

Уменьшение мощности излучения обеспечивается правильным выбором генератора, в котором используют поглотители мощности (рис. 69), ослабляющие энергию излучения.

Рис. 69. Конструкция поглотителей мощности для волноводов и коаксиальных линий: а — с охлаждающими ребрами; б — с проточной водой; в — скошенные; г — клинообразные; д — ступенчатые; е — в виде шайб

Поглотителем энергии являются специальные вставки из графита или материалов углеродистого состава, а также специальные диэлектрики.

Для сканирующих излучателей (вращающихся антенн) в секторе, в котором находится защищаемый объект — рабочее место, применяют способ блокирования излучения или снижение его мощности.

Экранированию подлежат либо источники излучения, либо зоны нахождения человека. Экраны могут быть замкнутыми (полностью изолирующими излучающее устройство или защищаемый объект) или незамкнутыми, различной формы и размеров, выполненными из сплошных, перфорированных, сотовых или сетчатых материалов.

На рис. 70 показан пример экранирования излучения промышленной частоты с помощью навеса из металлических прутков.

Рис. 70. Экранирующий навес над проходом в здание

Для исключения влияния электромагнитных полей на окружающую среду и территорию предприятия, окна помещений, в которых проводятся работы с электромагнитными излучателями, экранируют с помощью сетчатых или сотовых экранов.

Экраны частично отражают и частично поглощают электромагнитную энергию. По степени отражения и поглощения их условно разделяют на отражающие и поглощающие экраны.

Отражающие экраны выполняют из хорошо проводящих материалов, например стали, меди, алюминия толщиной не менее 0,5 мм из конструктивных и прочностных соображений.

Кроме сплошных, перфорированных, сетчатых и сотовых экранов могут применяться: фольга, наклеиваемая на несущее основание; токопроводящие краски (для повышения проводимости красок в них добавляют порошки коллоидного серебра, графита, сажи, окислов металлов, меди, алюминия), которыми окрашивают экранирующие поверхности; экраны с металлизированной со стороны падающей электромагнитной волны поверхностью.

Поглощающие экраны выполняют из радиопоглощающих материалов. Естественных материалов с хорошей радиопоглощающей способностью нет, поэтому их выполняют с помощью конструктивных приемов и введением различных поглощающих добавок в основу. В качестве основы используют каучук, поролон, пенополистирол, пенопласт, керамико-металлические композиции и т.д. В качестве добавок применяют сажу, активированный уголь, порошок карбонильного железа и др. Все экраны обязательно должны заземляться для обеспечения стекания образующихся на них зарядов в землю.

Для увеличения поглощающей способности экрана их делают многослойными и большой толщины, иногда со стороны падающей волны выполняют конусообразные выступы.

Наиболее часто в технике защиты от электромагнитных полей применяют металлические сетки. Они легки, прозрачны, поэтому обеспечивают возможность наблюдения за технологическим процессом и излучателем, пропускают воздух, обеспечивая охлаждение оборудования за счет естественной или искусственной вентиляции.

Расчет эффективности экранирования довольно сложен. Поэтому на практике при выборе типов экранов и оценки их эффективности используют имеющийся богатый экспериментальный материал, представленный в справочниках в виде таблиц, расчетно-экспериментальных кривых, номограмм. При расположении излучателей в помещениях электромагнитные волны могут отражаться от стен и перекрытий. В результате в помещении могут создаваться зоны с повышенной плотностью энергии излучения. Поэтому стены и перекрытия таких помещений необходимо выполнять с плохо отражающей поверхностью. Стены и потолки окрашивают известковой и меловой краской. Нельзя использовать масляную краску (она отражает до 30% электромагнитной энергии), облицовывать стены кафелем. Поверхности помещения, в которых находятся излучатели повышенных мощностей, облицовывают радиопоглощающим материалом.

Средства индивидуальной защиты. К СИЗ, которые применяют для защиты от электромагнитных излучений, относят: радиозащит-ные костюмы, комбинезоны, фартуки, очки, маски и т.д. Данные СИЗ используют метод экранирования.

Радиозащитные костюмы, комбинезоны, фартуки в общем случае шьются из хлопчатобумажного материала, вытканного вместе с микропроводом, выполняющим роль сетчатого экрана. Шлем и бахилы костюма сделаны из такой же ткани, но в шлем спереди вшиты очки и специальная проволочная сетка для облегчения дыхания.

Эффективность костюма может достигать 25...30 дБ. Для защиты глаз применяют очки специальных марок с металлизированными стеклами. Поверхность стекол покрыта пленкой диоксида олова. В оправе вшита металлическая сетка, и она плотно прилегает к лицу для исключения проникновения излучения сбоку. Эффективность защитных очков оценивается в 25...35 дБ.

Так же как и для других видов физических полей, защита от постоянных электрических и магнитных полей использует методы защиты временем, расстоянием и экранированием.

Методы и средства защиты от лазерного излучения

Для выбора средств защиты следует учитывать класс степени опасности лазера:

  • класс I (безопасные) — выходное излучение не представляет опасности для глаз и кожи;
  • класс II (малоопасные) — выходное излучение представляет опасность для глаз прямым и зеркально отраженным излучением;
  • класс III (опасные) — опасно для глаз прямое, зеркальное, а также диффузно отраженное излучение на расстоянии 10 см от диффузно отражающей поверхности и для кожи прямое и зеркально отраженное облучение;
  • класс IV (высокоопасные) — опасно для кожи диффузно отраженное излучение на расстоянии 10 см от отражающей поверхности.

Наиболее эффективным методом защиты от лазерного излучения является экранирование. На открытых площадках обозначаются опасные зоны и устанавливаются экраны, предотвращающие распространение излучений за пределы зон.

Непрозрачные экраны изготовляются из металлических листов (стали, дюралюминия и др.), гетинакса, пластика, текстолита, пластмасс.

Прозрачные экраны из специальных стекол светофильтров или неорганического стекла со спектральной характеристикой, соответствующей длине волны излучения лазера.

Приведение лазера в рабочее состояние обычно блокируется с установкой защитного устройства.

Работы с лазерными установками проводятся в отдельных помещениях или специально отгороженных частях помещения. Коэффициент естественной освещенности в таких помещениях должен быть не менее 1,5%, а общее искусственное освещение не менее 150 лк. Само пбмещение изнутри, оборудование и другие предметы не должны иметь зеркально отражающих поверхностей, если на них может падать прямой или отраженный луч лазера. При эксплуатации импульсных лазеров с высокой энергией излучения должно применяться дистанционное управление.

Средства индивидуальной защиты применяются при недостаточности средств коллективной защиты. К СИЗ относятся технологические халаты, перчатки (для защиты кожных покровов), специальные очки, маски, щитки (для защиты глаз). Халаты изготовляют из хлопчатобумажной ткани белого, светло-зеленого или голубого цвета. Очки снабжены оранжевыми, сине-зелеными и бесцветными стеклами специальных марок, обеспечивающими защиту от лазерного излучения определенных диапазонов длин волн.

Защита от инфракрасного (теплового) излучения

Для защиты от теплового излучения применяются средства коллективной и индивидуальной защиты.

Основными методами коллективной защиты являются: теплоизоляция рабочих поверхностей источников излучения теплоты, экранирование источников или рабочих мест, воздушное душирование рабочих мест, мелкодисперсное распыление воды с созданием водяных завес, общеобменная вентиляция, кондиционирование.

Средства защиты от теплового излучения должны обеспечивать: тепловую облученность на рабочих местах не более 0,14 Вт/м2, температуру поверхности оборудования не более 35 °С при температуре внутри источника теплоты до 100 °С и 45 °С при температуре внутри источника теплоты более 100 °С.

Теплоизоляция горячих поверхностей (оборудования, сосудов, трубопроводов и т.д.) снижает температуру излучающей поверхности и уменьшает общее выделение теплоты, в том числе ее лучистую часть, излучаемую в инфракрасном диапазоне ЭМИ. Для теплоизоляции применяют материалы с низкой теплопроводностью.

Конструктивно теплоизоляция может быть мастичной, оберточной, засыпной, из штучных изделий и комбинированной.

Мастичную изоляцию осуществляют путем нанесения на поверхность изолируемого объекта изоляционной мастики.

Оберточная изоляция изготовляется из волокнистых материалов — асбестовой ткани, минеральной ваты, войлока и др. и наиболее пригодна для трубопроводов и сосудов.

Засыпная изоляция (например, керамзит) в основном используется при прокладке трубопроводов в каналах и коробах.

Штучная изоляция выполняется формованными изделиями — кирпичом, матами, плитами и используется для упрощения изоляционных работ.

Комбинированная изоляция выполняется многослойной. Первый слой обычно выполняют из штучных изделий, последующие слои — из мастичных и оберточных материалов.

Теплозащитные экраны применяют для экранирования источников лучистой теплоты, защиты рабочего места и снижения температуры поверхностей предметов и оборудования, окружающих рабочее место. Теплозащитные экраны поглощают и отражают лучистую энергию. Различают теплоотражающие, теплопоглощающие и теплоотводящие экраны. По конструктивному выполнению экраны подразделяются на три класса: непрозрачные, полупрозрачные и прозрачные.

Непрозрачные экраны выполняются в виде каркаса с закрепленным на нем теплопоглощающим материалом или нанесенным на него теплоотражающим покрытием. В качестве отражающих материалов используют алюминиевую фольгу, алюминий листовой, белую жесть; в качестве покрытий — алюминиевую краску. Для непрозрачных поглощающих экранов используется теплоизоляционный кирпич, асбестовые щиты.

Непрозрачные теплоотводящие экраны изготавливаются в виде полых стальных плит с циркулирующей по ним водой или водовоздушной смесью, что обеспечивает температуру на наружной поверхности экрана не более 30...35 °С.

Полупрозрачные экраны применяются в случаях, когда экран не должен препятствовать наблюдению за технологическим процессом и вводу через него инструмента и материала.

В качестве полупрозрачных теплопоглощающих экранов используют металлические сетки с размером ячейки 3...3,5 мм, завесы в виде подвешенных цепей. Для экранирования кабин и пультов управления, в которые должен проникать свет используют стекло, армированное стальной сеткой. Полупрозрачные теплоотводящие экраны выполняют в виде металлических сеток, орошаемых водой, или в виде паровой завесы.

Прозрачные экраны изготовляют из бесцветных или окрашенных стекол — силикатных, кварцевых, органических. Обычно такими стеклами экранируют окна кабин и пультов управления. Теплоотводящие прозрачные экраны выполняют в виде двойного остекления с вентилируемой воздухом воздушной прослойкой, водяных и вододисперсных завес.

Воздушное душирование представляет собой подачу на рабочее место приточного прохладного воздуха в виде воздушной струи, создаваемой вентилятором. Могут применяться стационарные источники струи и передвижные в виде перемещаемых вентиляторов (рис. 71). Струя может подаваться сверху, снизу, сбоку и веером.

Рис. 71. Устройства воздушного душирования: а — стационарные; б — передвижные

Средства индивидуальной защиты. Применяется теплозащитная одежда из хлопчатобумажных, льняных тканей, грубодисперсного сукна. Для защиты от инфракрасного излучения высоких уровней используют отражающие ткани, на поверхности которых нанесен тонкий слой металла. Для работы в экстремальных условиях (тушение пожаров и др.) используются костюмы с повышенными теплозащитными свойствами.

Защита от ультрафиолетового излучения

Для защиты от ультрафиолетового излучения применяют специальные светофильтры, не пропускающие ЭМИ ультрафиолетового диапазона. Светофильтрами снабжаются смотровые окна установок, внутри которых возникает излучение УФ-диапазона (установки газо-электросварки и резки, плазменной обработки материала; печи, использующие в качестве нагревательных элементов мощные лампы; устройства накачки лазеров). Применяются также противосолнечные экраны и навесы.

В качестве средств индивидуальной защиты применяются светозащитные очки и щитки, для защиты кожи — защитная одежда, рукавицы, специальные кремы. Наиболее характерно применение таких СИЗ при проведении газо- и электросварочных работ.

 

 

 

Top.Mail.Ru
Top.Mail.Ru