|
|
>>> Перейти на мобильный размер сайта >>> Учебник для 9 класса ФИЗИКА§ 32. Распространение звука. Звуковые волныМы воспринимаем звуки, находясь на расстоянии от их источников. Обычно звук доходит до нас по воздуху. Воздух является упругой средой, передающей звук. Если между источником и приёмником удалить звукопередающую среду, то звук распространяться не будет и, следовательно, приёмник не воспримет его. Продемонстрируем это на опыте.
Поместим под колокол воздушного насоса часы-будильник (рис. 80). Пока в колоколе находится воздух, звук звонка слышен ясно. При откачивании воздуха из-под колокола звук постепенно слабеет и, наконец, становится неслышимым. Без передающей среды колебания тарелки звонка не могут распространяться, и звук не доходит до нашего уха. Впустим под колокол воздух и снова услышим звон.
Рис. 80. Опыт, доказывающий, что в пространстве, где нет вещественной среды, звук не распространяется Хорошо проводят звуки упругие вещества, например металлы, древесина, жидкости, газы. Положим на один конец деревянной доски карманные часы, а сами отойдём к другому концу. Приложив ухо к доске, услышим ход часов. Привяжем к металлической ложке бечёвку. Конец бечёвки приложим к уху. Ударяя по ложке, услышим сильный звук. Ещё более сильный звук услышим, если бечёвку заменим проволокой. Мягкие и пористые тела — плохие проводники звука. Чтобы защитить какое-нибудь помещение от проникновения посторонних звуков, стены, пол и потолок прокладывают прослойками из звукопоглощающих материалов. В качестве прослоек используют войлок, прессованную пробку, пористые камни, различные синтетические материалы (например, пенопласт), изготовленные на основе вспененных полимеров. Звук в таких прослойках быстро затухает. Жидкости хорошо проводят звук. Рыбы, например, хорошо слышат шаги и голоса на берегу, это известно опытным рыболовам. Итак, звук распространяется в любой упругой среде — твёрдой, жидкой и газообразной, но не может распространяться в пространстве, где нет вещества. Колебания источника создают в окружающей его среде упругую волну звуковой частоты. Волна, достигая уха, воздействует на барабанную перепонку, заставляя её колебаться с частотой, соответствующей частоте источника звука. Дрожания барабанной перепонки передаются посредством системы косточек окончаниям слухового нерва, раздражают их и тем вызывают ощущение звука. Напомним, что в газах и жидкостях могут существовать только продольные упругие волны. Звук в воздухе, например, передаётся продольными волнами, т. е. чередующимися сгущениями и разрежениями воздуха, идущими от источника звука.
При стрельбе из ружья звук выстрела слышен позже, чем видно появление огня и дыма Звуковая волна, как и любые другие механические волны, распространяется в пространстве не мгновенно, а с определённой скоростью. В этом можно убедиться, например, наблюдая издалека за стрельбой из ружья. Сначала видим огонь и дым, а потом через некоторое время слышим звук выстрела. Дым появляется в то же время, когда происходит первое звуковое колебание. Измерив промежуток времени t между моментом возникновения звука (момент появления дыма) и моментом, когда он доходит до уха, можно определить скорость распространения звука: V = s/t Измерения показывают, что скорость звука в воздухе при 0 °С и нормальном атмосферном давлении равна 332 м/с. Скорость звука в газах тем больше, чем выше их температура. Например, при 20 °С скорость звука в воздухе равна 343 м/с, при 60 °С — 366 м/с, при 100 °С — 387 м/с. Объясняется это тем, что с повышением температуры возрастает упругость газов, а чем больше упругие силы, возникающие в среде при её деформации, тем больше подвижность частиц и тем быстрее передаются колебания от одной точки к другой. Скорость звука зависит также от свойств среды, в которой распространяется звук. Например, при 0 °С скорость звука в водороде равна 1284 м/с, а в углекислом газе — 259 м/с, так как молекулы водорода менее массивны и менее инертны. В настоящее время скорость звука может быть измерена в любой среде. Молекулы в жидкостях и твёрдых телах расположены ближе друг к другу и сильнее взаимодействуют, чем молекулы газов. Поэтому скорость звука в жидких и твёрдых средах больше, чем в газообразных. Поскольку звук — это волна, то для определения скорости звука, помимо формулы V = s/t, можно пользоваться известными вам формулами: V = λ/T и V = vλ. При решении задач скорость звука в воздухе обычно считают равной 340 м/с. Вопросы
Упражнение 30
|
|
|