>>> Перейти на полный размер сайта >>>

Учебник для 10 класса

ФИЗИКА

       

§ 7.1. Абсолютно твердое тело и виды его движения

  • Проще всего описать движение тела, взаимное расположение частей которого не изменяется. Такое тело называется абсолютно твердым.

При изучении кинематики мы говорили, что описать движение тела — это значит описать движение всех его точек. Иными словами, надо уметь находить координаты, скорость, ускорение, траектории всех точек тела. В общем случае это сложная задача, и мы не будем пытаться ее решать. Особенно она сложна, когда тела заметно деформируются в процессе движения.

Тело можно считать абсолютно твердым, если расстояния между двумя любыми точками тела неизменны. Иначе говоря, форма и размеры абсолютно твердого тела не изменяются при действии на него любых сил(1).

На самом деле таких тел нет. Это физическая модель. В тех случаях, когда деформации малы, можно реальные тела рассматривать как абсолютно твердые. Однако и движение твердого тела в общем случае сложно. Мы остановимся на двух, наиболее простых видах движения твердого тела: поступательном и вращательном.

Поступательное движение

Твердое тело движется поступательно, если любой отрезок прямой линии, жестко связанный с телом, все время перемещается параллельно самому себе.

При поступательном движении все точки тела совершают одинаковые перемещения, описывают одинаковые траектории, проходят одинаковые пути, имеют равные скорости и ускорения. Покажем это.

Пусть тело движется поступательно. Соединим две произвольные точки А и В тела отрезком прямой линии (рис. 7.1). Отрезок АВ должен оставаться параллельным самому себе. Расстояние АВ не изменяется, так как тело абсолютно твердое.

Рис. 7.1

В процессе поступательного движения вектор не изменяется, т. е. остаются постоянными его модуль и направление. Вследствие этого траектории точек А и В идентичны, так как они могут быть полностью совмещены параллельным переносом на .

Нетрудно заметить, что перемещения точек А и Б одинаковы и совершаются за одно и то же время. Следовательно, точки А и В имеют одинаковые скорости. Одинаковы у них и ускорения.

Совершенно очевидно, что для описания поступательного движения тела достаточно описать движение какой-либо одной его точки, так как все точки движутся одинаково. Лишь в этом движении можно говорить о скорости тела и ускорении тела. При любом другом движении тела его точки имеют различные скорости и ускорения, и термины «скорость тела» или «ускорение тела» теряют смысл.

Приблизительно поступательно движется ящик письменного стола, поршни двигателя автомобиля относительно цилиндров, вагоны на прямолинейном участке железной дороги, резец токарного станка относительно станины (рис. 7.2) и т. д.

Рис. 7.2

Поступательными можно считать и движения, имеющие довольно сложный вид, например движение педали велосипеда или кабины «колеса обозрения» (рис. 7.3) в парках.

Рис. 7.3

Вращательное движение

Вращательное движение вокруг неподвижной оси — еще один вид движения твердого тела.

Вращением твердого тела вокруг неподвижной оси называется такое движение, при котором все точки тела описывают окружности, центры которых находятся на одной прямой, перпендикулярной плоскостям этих окружностей. Сама эта прямая есть ось вращения (MN на рисунке 7.4).

Рис. 7.4

В технике такой вид движения встречается чрезвычайно часто: вращение валов двигателей и генераторов, колес современных скоростных электропоездов и деревенской телеги, турбин и пропеллеров самолетов и т. д. Вращается Земля вокруг своей оси.

Долгое время считалось, что в живых организмах устройств, подобных вращающемуся колесу, нет: «природа не создала колеса». Но исследования последних лет показали, что это не_так. У многих бактерий, например у кишечной палочки, имеется «мотор», вращающий жгутики. С помощью этих жгутиков бактерия перемещается в среде (рис. 7.5, а). Основание жгутика прикреплено к колесику (ротору) в форме кольца (рис. 7.5, б). Плоскость ротора параллельна другому кольцу, закрепленному в мембране клетки. Ротор вращается, делая до восьми оборотов в секунду. Механизм, приводящий ротор во вращение, остается пока во многом не ясным.

Рис. 7.5

Кинематическое описание вращательного движения твердого тела

При вращении тела радиус rА окружности, описываемой точкой А этого тела (см. рис. 7.4), повернется за интервал времени Δt на некоторый угол φ. Легко видеть, что вследствие неизменности взаимного расположения точек тела на такой же угол φ повернутся за то же время и радиусы окружностей, описываемых любыми другими точками тела (см. рис. 7.4). Следовательно, этот угол φ можно считать величиной, характеризующей движение не только отдельной точки тела, но и вращательное движение всего тела в целом. Стало быть, для описания вращения твердого тела вокруг неподвижной оси достаточно лишь одной величины — переменной φ(t).

Этой единственной величиной (координатой) и может служить угол φ, на который поворачивается тело вокруг оси относительно некоторого своего положения, принятого за нулевое. Это положение задается осью О1Х на рисунке 7.4 (отрезки O2В, О3С параллельны О1Х).

В § 1.28 было рассмотрено движение точки по окружности. Были введены понятия угловой скорости ω и углового ускорения β. Так как при вращении твердого тела все его точки за одинаковые интервалы времени поворачиваются на одинаковые углы, то все формулы, описывающие движение точки по окружности, оказываются применимыми и для описания вращения твердого тела. Определения угловой скорости (1.28.2) и углового ускорения (1.28.6) могут быть отнесены к вращению твердого тела. Точно так же справедливы формулы (1.28.7) и (1.28.8) для описания движения твердого тела с постоянным угловым ускорением.

Связь между линейной и угловой скоростями (см. § 1.28) для каждой точки твердого тела дается формулой

где R — расстояние точки от оси вращения, т. е. радиус окружности, описываемой точкой вращающегося тела. Направлена линейная скорость по касательной к этой окружности. Различные точки твердого тела имеют разные линейные скорости при одной и той же угловой скорости.

Различные точки твердого тела имеют нормальные и тангенциальные ускорения, определяемые формулами (1.28.10) и (1.28.11):

Плоскопараллельное движение

Плоскопараллельным (или просто плоским) движением твердого тела называется такое движение, при котором каждая точка тела движется все время в одной плоскости. Причем все плоскости, в которых движутся точки, параллельны между собой. Типичный пример плоскопараллельного движения — качение цилиндра по плоскости. Плоскопараллельным является также движение колеса по прямому рельсу.

Напомним (в который раз!), что говорить о характере движения того или иного тела можно лишь по отношению к определенной системе отсчета. Так, в приведенных примерах в системе отсчета, связанной с рельсом (землей), движение цилиндpa или колеса является плоскопараллельным, а в системе отсчета, связанной с осью колеса (или цилиндра), — вращательным. Следовательно, скорость каждой точки колеса в системе отсчета, связаннои с землей (абсолютная скорость), согласно закону сложения скоростей равна векторной сумме линейной скорости вращательного движения (относительной скорости) и скорости поступательного движения оси (переносной скорости) (рис. 7.6):

Рис. 7.6

Мгновенный центр вращения

Пусть тонкий диск катится по плоскости (рис. 7.7). Окружность можно рассматривать как правильный многоугольник со сколь угодно большим числом сторон.

Поэтому круг, изображенный на рисунке 7.7, можно мысленно заменить многоугольником (рис. 7.8). Но движение последнего состоит из ряда небольших поворотов: сначала вокруг точки С, затем вокруг точек С1, С2 и т. д. Поэтому движение диска тоже можно рассматривать как последовательность очень малых (бесконечно малых) поворотов вокруг точек С, C1 C2 и т. д.(2). Таким образом, в каждый момент времени диск вращается вокруг своей нижней точки С. Эта точка называется мгновенным центром вращения диска. В случае качения диска по плоскости можно говорить о мгновенной оси вращения. Этой осью является линия соприкосновения диска с плоскостью в данный момент времени.

Рис. 7.7 и 7.8

Введение понятия мгновенного центра (мгновенной оси) вращения упрощает решение ряда задач. Например, зная, что центр диска имеет скорость и, можно найти скорость точки А (см. рис. 7.7). Действительно, так как диск вращается вокруг мгновенного центра С, то радиус вращения точки А равен АС, а радиус вращения точки О равен ОС. Но так как АС = 20С, то

Аналогично можно найти скорость любой точки этого диска.

Мы познакомились с наиболее простыми видами движения твердого тела: поступательным, вращательным, плоскопараллельным. В дальнейшем нам предстоит заняться динамикой твердого тела.


(1) В дальнейшем для краткости мы будем говорить просто о твердом теле.

(2) Разумеется, изобразить на рисунке многоугольник с бесконечным числом сторон невозможно.

 

 

 

Top.Mail.Ru
Top.Mail.Ru