>>> Перейти на полный размер сайта >>> Учебник для 10 класса ФИЗИКА§ 1.12. Скорость при произвольном движении
Под направлением движения тела в некоторый момент времени принято понимать направление его скорости в этот момент. Скорость
Рис. 1.35 Средняя скоростьПонятие вектора скорости вводится в принципе таким же способом, как и понятие скорости изменения координаты тела (см. § 1.7). Вектор средней (по времени) скорости равен отношению вектора перемещения Δ
Направление вектора средней скорости
Рис. 1.36 Мгновенная скоростьСредняя скорость, определяемая выражением (1.12.1), сама по себе не играет практически существенной роли. Например, при посадке на Луну космического аппарата или при стыковке космических кораблей необходимо знать не среднюю скорость, а скорость в каждое мгновение, в каждой точке сложной криволинейной траектории — мгновенную скорость. Но чтобы ввести понятие мгновенной скорости произвольного криволинейного движения, надо воспользоваться понятием средней скорости. Прием, используемый здесь, вполне подобен приему, применяемому при введении понятия мгновенной скорости прямолинейного неравномерного движения. При уменьшении интервала времени Δt перемещения Δ
Рис. 1.37 Итак, мгновенной скоростью называется предел отношения перемещения Δ По определению имеем
Мгновенную скорость, как и в § 1.7, можно записать с помощью производной
Эта величина характеризует быстроту изменения радиуса-вектора движущейся точки во времени. Мгновенная скорость направлена по касательной к траектории. Действительно, при уменьшении интервала Δt вектор Δ В частности, скорость точки, движущейся по окружности, направлена по касательной к этой окружности. Это нетрудно наблюдать. Если маленькие частички отделяются от вращающегося диска, то они летят по касательной, так как имеют в момент отрыва скорость, равную скорости точек на окружности диска. Вот почему грязь из-под колес буксующей машины летит по касательной к окружности колес (рис. 1.38, а). Также по касательной летят раскаленные частицы точильного камня, отрывающиеся от вращающегося диска, если коснуться его поверхности стальным резцом (рис. 1.38, б).
Рис. 1.38 Так как изменения координат Δх, Δу и Δz являются проекциями вектора перемещения Δ
являются проекциями на оси X, Y и Z вектора скорости v движущейся точки1. Формула для мгновенной скорости (1.12.2), по существу, есть символическая запись трех выражений (1.12.3).
Модуль вектора скорости определяется через его проекции по общему для всех векторов правилу:
Направление вектора В случае движения с постоянной скоростью система уравнений (1.8.1) эквивалентна одному векторному уравнению
где Подобно радиусу-вектору и перемещению, скорость является вектором. Мгновенная скорость или скорость в точке представляет собой производную радиуса-вектора по времени. 1 Каждая из этих формул есть не что иное, как определение мгновенной скорости (1.7.1) для прямолинейного движения вдоль осей X, Y, Z. Впрочем, в дальнейшем мы ограничимся рассмотрением движения на плоскости и поэтому не будем пользоваться осью Z и соответственно vz.
|