Учебник для 10 класса

ФИЗИКА

       

§ 2.9. Основные задачи механики

  • С помощью законов Ньютона мы можем не только объяснять наблюдаемые механические явления, но и предсказывать их течение.

Основная (прямая) задача механики

Основная задача механики состоит в нахождении положения и скорости тела в любой момент времени, если известны его положение и скорость в начальный момент времени и действующие на него силы.

Эта задача решается с помощью второго закона Ньютона — основного закона классической механики:

Его часто называют уравнением движения.

Так как ускорение и сила — величины векторные, то уравнение (2.9.1) фактически является компактной записью трех независимых уравнений:

где ах, ау, az — проекции вектора ускорения на оси координатной системы отсчета, a Fix, Fiy, Fiz — проекции векторов сил на те же оси. В случае движения на плоскости достаточно двух уравнений в проекциях, а в случае прямолинейного — одного.

Обычно нам бывают известны из опыта силы как функции координат и скоростей. Зная силы и массу, легко определить проекции ускорения с помощью уравнений (2.9.2).

Но ускорение, как вы знаете из кинематики, не определяет однозначно скорость тела и его координаты. Так, в случае постоянной проекции ускорения ах на ось X проекция скорости vx и координата х находятся из уравнений:

Таким образом, для определения проекции скорости в произвольный момент времени нужно знать проекцию начальной скорости v0x (проекцию в начальный момент времени t0 = 0), а для определения координаты требуется еще знание начальной координаты х0.

Если же сила меняется с течением времени, то ускорение не остается постоянным. В этом случае формулы (2.9.3) и (2.9.4) уже не будут справедливыми для любого момента времени и зависимость координат и проекций скоростей от времени будет иметь гораздо более сложный вид. (Формулы (2.9.3) и (2.9.4) справедливы лишь для очень малых интервалов времени, в течение которых ускорение можно считать постоянным.)

Но по-прежнему для нахождения координат и проекций скоростей нужно знать начальные значения этих величин.

Расчет траектории космического корабля и его скорости в произвольный момент времени с учетом влияния как Земли, так и других планет — пример сложной задачи, решаемой с помощью электронных вычислительных машин. Необходимость использования ЭВМ связана еще и с тем, что космические корабли имеют большие скорости. Поэтому при коррекции траектории корабля необходимо обработать обширную информацию в очень короткое время.

Обратная задача механики

Кроме прямой задачи законы механики позволяют решать и обратную задачу. Она состоит в определении сил по известному или заданному движению, т. е. по зависимости координат, скоростей или ускорений от времени. Такую обратную задачу решил Ньютон, определяя силу тяготения по известным кинематическим законам движения планет (законам Кеплера). В настоящее время подобные задачи решаются при определении формы Земли и расположения в ней горных пород различной плотности посредством точного определения орбит спутников.

Часто приходится решать обратную задачу конструкторам: по заданному условиями работы движению деталей машины им приходится рассчитывать действующие на них силы. Это необходимо для правильного выбора материалов, формы и размеров деталей, обеспечивающих необходимую прочность.

Во многих случаях силы упругости в растянутых тросах можно определить по ускорению, сообщаемому ими телам, не прибегая к непосредственному измерению деформации тросов.

Зная массу тела и силу, можно определить ускорение в любой момент времени. По известному ускорению и начальной скорости можно найти скорость в любой момент времени. Зная скорость и начальные координаты, можно вычислить координаты в любой момент времени.

 

 

 

Top.Mail.Ru
Top.Mail.Ru