|
|
>>> Перейти на мобильный размер сайта >>> Учебник для 10 класса ФИЗИКА§ 1.28. Угловая скорость и угловое ускорение
Угловая скоростьПроведем координатную ось X через центр окружности (начало координат), вдоль которой движется точка (рис. 1.86). Тогда положение точки А на окружности в любой момент времени однозначно определяется углом φ между осью X и радиусом-вектором
Рис. 1.86 При движении точки угол φ изменяется. Обозначим изменение угла за время Δt через Δφ. Для нахождения положения точки в любой момент времени надо знать угол φ0 в начальный момент времени t0 и определить, на сколько изменился угол за время движения (рис. 1.87): φ = φ0 + Δφ. (1.28.1)
Рис. 1.87 Пусть точка движется по окружности с постоянной по модулю скоростью. Тогда за любые равные промежутки времени радиус-вектор поворачивается на одинаковые углы. Быстрота обращения точки определяется углом поворота радиуса-вектора за данный интервал времени. Например, если радиус-вектор точки за каждую секунду поворачивается на угол 90° = Если при равномерном обращении за время Δt радиус-вектор повернулся на угол Δφ, то быстрота обращения определится углом поворота в единицу времени. Быстроту обращения характеризуют угловой скоростью. Угловой скоростью при равномерном движении точки по окружности называется отношение угла Δφ поворота радиуса-вектора к промежутку времени Δt, за который этот поворот произошел. Обозначим угловую скорость греческой буквой ω (омега). Тогда по определению(2)
В СИ(3) угловая скорость выражается в радианах в секунду (рад/с). Радиан в секунду равен угловой скорости равномерно обращающейся точки, при которой за время 1 с радиус-вектор этой точки поворачивается на угол 1 рад. Например, угловая скорость точки земной поверхности равна 0,0000727 рад/с, а точильного диска более 100 рад/с. Угловую скорость можно выразить через частоту обращения, т. е. число оборотов за 1с. Если точка делает п оборотов в секунду, то время одного оборота равно Это время называют периодом обращенияи обозначают буквой Т. Таким образом, частота и период обращения связаны следующим соотношением: T = Полному обороту точки на окружности соответствует угол Δφ = 2π. Поэтому, согласно формуле (1.28.2),
Частота обращения точек рабочих колес мощных гидротурбин составляет 1—10 с-1, винта вертолета — 4—6 с-1, ротора газовой турбины — 200—300 с-1. Если при равномерном обращении точки угловая скорость известна, то можно найти изменение угла поворота Δφ за время Δt. Оно равно Δφ = ωΔt. С учетом этого формула (1.28.1) примет вид: φ = φ0 + ωΔt. Приняв начальный момент времени t0 равным нулю, получим, что Δt = t - t0 = t. Тогда угол поворота равен
По этой формуле можно найти положение точки на окружности в любой момент времени. Угловое ускорениеВ случае переменной угловой скорости вводится новая физическая величина, характеризующая быстроту ее изменения, — угловое ускорение:
Угловое ускорение равно производной угловой скорости по времени. Если β = const, то ω(t) = ω0 + β(t - t0), где ω0 — угловая скорость в начальный момент времени t0. При t0 = 0
Эта формула подобна формуле проекции скорости vx = v0x + axt при прямолинейном движении точки. Соответственно угол поворота
Эту формулу можно получить точно таким же способом, как и уравнение координаты при прямолинейном движении х = Связь между линейной и угловой скоростямиСкорость точки, движущейся по окружности, часто называют линейной скоростью, чтобы подчеркнуть ее отличие от угловой скорости. Между линейной скоростью точки, обращающейся по окружности, и ее угловой скоростью существует связь. При равномерном движении точки по любой траектории модуль скорости равен отношению пути s ко времени Δt, за которое этот путь пройден. Точка А, движущаяся по окружноcти радиусом R, за время Δt проходит путь, равный длине дуги
Рис. 1.88 Итак, модуль линейной скорости точки, движущейся по окружности, равен произведению угловой скорости на радиус окружности:
Эта формула справедлива как для равномерного, так и для неравномерного движения точки по окружности. Из выражения (1.28.9) видно, что чем больше радиус окружности, тем больше линейная скорость точки. Для точек земного экватора v = 463 м/с, а на широте Санкт-Петербурга — 233 м/с. На полюсах Земли v = 0. Модуль ускорения точки, движущейся равномерно по окружности (центростремительное, или нормальное, ускорение) можно выразить через угловую скорость тела и радиус окружности. Так как а =
Чем больше радиус окружности, тем большее по модулю ускорение имеет точка при заданной угловой скорости. Ускорение любой точки поверхности Земли на экваторе составляет 3,4 см/с2. Связь линейного ускорения с угловымС изменением угловой скорости точки меняется и ее линейная скорость. Нормальное ускорение связано согласно формуле (1.28.10) с угловой скоростью и не зависит, следовательно, от углового ускорения. Но тангенциальное ускорение, определяемое формулой (1.27.4), выражается через угловое ускорение:
Мы научились полностью описывать движение точки по окружности. При фиксированном радиусе окружности модуль скорости (линейная скорость) пропорционален угловой скорости, а нормальное ускорение пропорционально ее квадрату. Тангенциальное ускорение пропорционально угловому ускорению. Упражнение 5
(1) Напомним, что радиан равен центральному углу, опирающемуся на дугу, длина которой равна радиусу окружности. 1 рад приблизительно равен 57°17'48". В радианной мере угол равен отношению длины дуги окружности к ее радиусу: (2) Когда точка движется неравномерно, то мгновенная угловая скорость определяется как предел отношения Δφ к Δt при условии, что Δt —> 0: (3) СИ — Международная система единиц. В этой системе за единицу длины принят 1 м, за единицу времени — 1с. Подробнее о СИ будет рассказано в дальнейшем.
|
|
|