Задачи на материал данной главы отличаются от обычных задач на гидростатику лишь тем, что в них принимается во внимание еще одна сила — сила поверхностного натяжения, определяемая формулой (7.4.3).
Для решения задач используются также формулы для поверхностной энергии (7.3.2), давления под изогнутой поверхностью (7.6.6) и высоты поднятия жидкости в капилляре (7.7.3).
Задача 1
Определите энергию, освободившуюся при слиянии мелких капель воды радиусом r = 2 • 10-3 мм в одну большую каплю радиусом R = 2 мм. Считать, что при слиянии мелких капель температура не изменяется. Поверхностное натяжение воды равно σ = 7,4 • 10-2 Н/м.
Решение. Обозначим число мелких капель через n. Тогда общая поверхность всех мелких капель
Поверхность одной большой капли
Поверхностная энергия всех мелких капель
а одной крупной капли
Так как температура не изменялась, то кинетическая энергия молекул воды тоже не изменилась. Следовательно, выделение энергии произошло за счет уменьшения потенциальной (поверхностной)энергии:
Чтобы найти число капель п, учтем, что объем воды не изменился. Сумма объемов мелких капель
а объем большой капли
Так как V1 = V2, то
Отсюда число мелких капель
Подставляя это значение n в выражение (7.8.1), получим
Задача 2
Смачиваемый водой кубик массой m = 0,02 кг плавает на поверхности воды. Ребро кубика имеет длину а = 0,03 м. На каком расстоянии х от поверхности воды находится нижняя грань кубика?
Решение. Архимедова сила уравновешивает силу тяжести кубика и силу поверхностного натяжения. Следовательно,
Отсюда
Силы поверхностного натяжения вносят поправку около 1 мм.
Задача 3
Два мыльных пузыря радиусами R и r «срослись», как показано на рисунке 7.29. Какую форму примет пленка, разделяющая оба пузыря? Какие углы образуются между пленками в местах их соприкосновения?
Рис. 7.29
Решение. Давление внутри мыльного пузыря радиусом R больше атмосферного давления на величину , а внутри меньшего пузыря — на величину . В этих выражениях учтено, что у мыльного пузыря две поверхности. Давление внутри пузыря радиусом R вместе с давлением участка пленки между пузырями должно уравновесить давление внутри меньшего пузыря. Следовательно,
где Rx — радиус кривизны участка пленки АВ. Отсюда
Силы поверхностного натяжения в любой точке поверхности соприкосновения пузырей уравновешивают друг друга и равны между собой. А это возможно только в том случае, когда углы между векторами сил равны 120°.
Задача 4
Длинную стеклянную капиллярную трубку, радиус канала которой r = 1 мм, закрыли снизу и наполнили водой. Трубку поставили вертикально и открыли ее нижний конец, при этом часть воды вылилась. Какова высота столба оставшейся в капилляре воды?
Решение. Столб воды в поставленной вертикально трубке удерживается верхним и нижним менисками (рис. 7.30).
Рис. 7.30
Давление в точке В под верхним мениском
а давление в точке С над нижним мениском
С другой стороны,
Следовательно,
или
Отсюда
Задача 5
Конец капиллярной трубки опущен в воду. Какое количество теплоты Q выделится при поднятии жидкости по капилляру? Краевой угол принять равным нулю (полное смачивание).
Решение. Жидкость поднимается согласно формуле (7.7.3) на высоту h = . Потенциальная энергия столбика жидкости в поле тяготения Земли
так как
Силы поверхностного натяжения совершают работу
На увеличение потенциальной энергии Еp идет половина этой работы. Следовательно, выделение теплоты происходит за счет другой половины. Таким образом,
Задача 6
Капиллярная трубка погружена в воду таким образом, что длина непогруженной ее части составляет l = 0,2 м. Вода поднялась в трубке на высоту = 0,1 м. В этом положении верхний конец трубки закрывают пальцем и трубку погружают в воду до тех пор, пока уровень воды в ней не сравняется с уровнем воды в сосуде. Найдите длину выступающей из воды части трубки в этом положении. Внешнее давление р0 = 105 Па.
Решение. Согласно формуле (7.7.3)
Найдем давление воздуха, которое установится в погруженном закрытом сверху капилляре после выравнивания уровней воды (в сосуде и капилляре). Обозначим давление воздуха в капилляре буквой р, тогда под вогнутой поверхностью воды в капилляре давление равно (см. § 7.6). Так как жидкость в капилляре и сосуде находится в равновесии, то давление на жидкость в сосуде (атмосферное давление р0) равно давлению :
Откуда
Полагая температуру неизменной и применив закон Бойля—Мариотта, получим
Отсюда
Найдем из уравнения (7.8.7) значение σ и подставим его в выражение (7.8.8):
И наконец, подставив в (7.8.10) выражение (7.8.11) для р, окончательно получим
Упражнение 6
Какую работу надо совершить, чтобы выдуть мыльный пузырь диаметром D = 12 см? Поверхностное натяжение мыльного раствора считать равным 4 • 10-2 Н/м.
Каким усилием можно оторвать тонкое металлическое кольцо от мыльного раствора (σ = 4 • 10-2 Н/м), если диаметр кольца 15,6 см, масса 7,0 г и кольцо соприкасается с раствором по окружности?
Каким образом, используя явления смачивания и несмачивания, можно осуществить минимальный и максимальный термометры?
При удалении с поверхности ткани жирного пятна рекомендуется смачивать пропитанной бензином ваткой края пятна. Смачивать бензином сразу само пятно не следует. Почему?
Чтобы мазь лучше впитывалась в смазанные лыжные ботинки, их нагревают. Как нужно нагревать ботинки — снаружи или изнутри?
Почему с помощью утюга можно вывести пятно жира с костюма?
Почему при сушке дров на солнце на конце полена, находящемся в тени, выступают капельки воды?
На сколько давление воздуха внутри мыльного пузыря больше атмосферного давления, если диаметр пузыря D = 10 мм? Поверхностное натяжение мыльного раствора σ = 4 • 10-2 Н/м.
Из трубки с раструбами на концах выдули два мыльных пузыря (рис. 7.31), после чего закрыли пальцем трубку С. Будет ли воздух переходить из одного пузыря в другой? До каких пор?
Рис. 7.31
В носик стеклянной трубки от пипетки (рис. 7.32) попадает капля воды. В какую сторону при этом устремляется капля — к широкому или узкому концу трубки? Почему?
Рис. 7.32
В дне чайника имеется круглое отверстие диаметром 0,1 мм. До какой высоты можно налить воду в чайник, чтобы она не выливалась через отверстие? Сохранится ли это условие, если воду в чайнике нагревать?
Конец стеклянной капиллярной трубки радиусом r = 0,05 см опущен в воду на глубину h = 2 см. Какое давление необходимо, чтобы выдуть пузырек воздуха через нижний конец трубки?
Смачивающая жидкость плотностью р поднялась в капиллярной трубке на высоту h. Каково давление в жидкости внутри капилляра на высоте h/4? Атмосферное давление равно р0.
Докажите, что в случае неполного смачивания (Θ ≠ 0) высота поднятия жидкости в вертикальной капиллярной трубке вычисляется по формуле , где Θ — краевой угол, r — радиус канала трубки и ρ — плотность жидкости. Как изменится формула , если сосуд с жидкостью будет установлен в лифте, движущемся с ускорением , направленным вверх? вниз?
Длинную капиллярную трубку радиусом 0,8 мм заполнили водой и перевели в вертикальное положение. Найдите массу жидкости, оставшейся в трубке после того, как часть воды вылилась.
В капиллярной трубке, опущенной вертикально в воду на глубину l, вода поднялась на высоту h (рис. 7.33). Нижний конец трубки закрывают, вынимают ее из воды и снова открывают. Определите длину столбика воды, оставшейся в трубке.
Рис. 7.33
Стеклянная капиллярная трубка, внутренний диаметр которой d = 0,5 мм, погружена в воду. Верхний конец трубки выступает на h = 2 см над поверхностью воды. Какую форму имеет мениск? Чему равен его радиус кривизны?
Капиллярная стеклянная трубка имеет радиус канала r = 0,05 см и запаяна сверху. Трубка открытым концом опускается вертикально в воду. Какой длины следовало бы взять трубку, чтобы при этих условиях вода в ней поднялась на высоту h = 1 см? Давление воздуха р0 = 105 Па. Поверхностное натяжение воды σ = 7 • 10-2 Н/м.
Каким образом можно без потерь налить жидкость в сосуд, находясь в условиях невесомости (на космическом корабле)? Как в этих условиях извлечь жидкость из сосуда?
Великому датскому физику Н. Бору довелось однажды мыть посуду в горной альпийской хижине. Он был крайне удивлен, увидев, что можно получить чистую посуду с помощью небольшого количества грязной воды и грязной тряпки. В чем здесь дело?