Учебник для 10 класса

ФИЗИКА

       

§ 1.3. Краткий очерк развития представлений о природе тепловых явлений

Несмотря на видимую простоту и очевидность тепловых явлений, для понимания их сути ученым пришлось напряженно работать несколько сотен лет. История создания теории тепловых процессов — пример того, каким сложным и подчас противоречивым путем добываются научные истины.

Воззрения древних

Большинство философов древности были склонны рассматривать огонь и связанную с ним теплоту как одну из стихий, которая наряду с землей, водой и воздухом образует все тела. Одновременно были сделаны попытки связать теплоту с внутренними движениями в телах, так как было замечено, что при соударении тел или трении их друг о друга они нагреваются.

Зарождение научной теории тепла

Первые успехи на пути построения научной теории тепла относятся к началу XVII в., когда был изобретен термометр и появилась возможность количественного исследования тепловых процессов. Этот прибор, к которому мы все так привыкли, по словам Р. Майера (одного из первооткрывателей закона сохранения энергии), явился «могущественным инструментом в титанической борьбе между истиной и заблуждением». Но о том, что же именно измеряют термометром, единого мнения не было. Вплоть до второй половины XVIII в. отсутствовало ясное разграничение понятий «температура» и «количество теплоты».

Экспериментальные исследования с применением термометра вновь остро поставили вопрос о том, что же такое теплота. Четко наметились две диаметрально противоположные точки зрения. Согласно так называемой вещественной теории тепла теплоту связывали с особого рода невесомой жидкостью, способной перетекать от одного тела к другому. Эта жидкость была названа теплородом. Чем больше теплорода в теле, тем выше температура тела.

Согласно другой точке зрения, теплота — это вид внутреннего движения частиц, составляющих тела. Чем быстрее движутся частицы, тем выше температура тела. В этой теории тепловые явления связывались с атомистическим учением древних философов о строении вещества. Теория первоначально называлась корпускулярной теорией тепла (от латинского слова corpusculum — частица). Ее придерживались такие выдающиеся ученые, как И. Ньютон, Р. Гук, Р. Бойль, Д. Бернулли и др.

Большой вклад в развитие корпускулярной теории был сделан великим русским ученым М. В. Ломоносовым. Ломоносов рассматривал теплоту как вращательное движение частиц вещества. С помощью своей теории он дал правильное, в общих чертах, объяснение явлений плавления, испарения и теплопроводности. Им был сделан вывод о существовании «наибольшей или последней степени холода», когда движение частиц вещества прекращается. Благодаря работам Ломоносова и его авторитету среди русских ученых было мало сторонников вещественной теории тепла.

Теория теплорода

Несмотря на привлекательность и глубину корпускулярной теории тепла, к середине XVIII в. временную победу одержала теория теплорода. Это произошло после того, как экспериментально было доказано сохранение количества теплоты при теплообмене. Отсюда был сделан вывод о сохранении (не-уничтожимости) тепловой жидкости — теплорода. На основе вещественной теории теплоты были введены понятия теплоемкости тел, удельных теплот парообразования и плавления, построена количественная теория теплопроводности. Многими терминами, введенными в то время, мы пользуемся и сейчас.

С помощью корпускулярной теории теплоты не удавалось получить столь важные для физики количественные связи между различными величинами, характеризующими тепловые процессы. В частности, эта теория не смогла объяснить, почему теплота сохраняется при теплообмене. В те времена не была ясна связь между механической характеристикой движения частиц — их кинетической энергией и температурой тела. Понятие энергии вообще еще не было введено в физику. Поэтому на основе корпускулярной теории в XVIII в. не могли быть достигнуты те немалые успехи в развитии количественной теории тепловых явлений, какие были сделаны с помощью простой теории теплорода. Для своего времени теория теплорода была прогрессивной.


Ломоносов Михаил Васильевич (1711— 1765) — великий русский ученый-энциклопедист, поэт и общественный деятель, основатель Московского университета, носящего его имя. А. С. Пушкин назвал М. В. Ломоносова «первым русским университетом». М.В.Ломоносову принадлежат выдающиеся труды по физике, химии, горному делу и металлургии. Он развил молекулярно-кинетическую теорию теплоты, в его работах предвосхищены законы сохранения массы и энергии. М. В. Ломоносов создал фундаментальные труды по истории русского народа, он является основоположником современной русской грамматики.


Крах теории теплорода

В конце XVIII в. вещественная теория теплоты начала сталкиваться со все большими и большими трудностями и к середине XIX в. потерпела полное и окончательное поражение.

Большим числом разнообразных опытов было показано, что сохраняющейся «тепловой жидкости» не существует. Например, при совершении работы силами трения можно получить от двух тел любое количество теплоты; тем большее, чем большее время силы трения совершают работу. В то же время при совершении работы паровой машиной пар охлаждается и теплота исчезает.

Итак, простая идея о сохранении невесомой жидкости — теплорода оказалась ложной. Но нельзя сказать, что ученые с самого начала стали жертвами грубого, непростительного заблуждения. Сходная мысль о сохранении некой «электрической жидкости», высказанная в начале развития теории электричества, оказалась в общих чертах верной. В нее после открытия дискретного строения электричества и двух знаков электрических зарядов были внесены лишь поправки.

В середине XIX в. опытным путем была доказана эквивалентность механической работы и количества теплоты, переданной телу. Подобно работе, количество теплоты оказалось мерой изменения энергии. Нагревание или охлаждение тела связано не с увеличением или уменьшением в нем количества особой невесомой жидкости, а с увеличением или уменьшением его энергии.

Принцип сохранения теплорода был заменен более общим и глубоким принципом — законом сохранения энергии.

 

 

 

Top.Mail.Ru
Top.Mail.Ru