Учебник для ВУЗОВ

БИОХИМИЯ

>>> Перейти на полный размер сайта >>>

       

I. Структура, классификация и свойства основных липидов организма человека

Липиды разных классов существенно отличаются по структуре и функциям. Большинство липидов имеют в своём составе жирные кислоты, связанные сложноэфирной связью с глице-ролом, холестеролом или амидной связью с аминоспиртом сфингозином.

А. Структура, состав и свойства жирных кислот и ацилглицеролов

Жирные кислоты в организме человека имеют чётное число атомов углерода, что связано с особенностями их биосинтеза, при котором к углеводородному радикалу жирной кислоты последовательно добавляются двухуглеродные фрагменты.

Жирные кислоты — структурные компоненты различных липидов. В составе триацилглицеролов жирные кислоты выполняют функцию депонирования энергии, так как их радикалы содержат богатые энергией СН2-группы. При окислении СН-связей энергии выделяется больше, чем при окислении углеводов, в которых атомы углерода уже частично окислены (-НСОН-). В составе фосфолипидов и сфинго-липидов жирные кислоты образуют внутренний гидрофобный слой мембран, определяя его свойства. Жиры и фосфолипиды организма при нормальной температуре тела имеют жидкую консистенцию, так как количество ненасыщенных жирных кислот преобладает над насыщенными. В фосфолипидах мембран ненасыщенных кислот может быть до 80—85%, а в составе жиров подкожного жира — до 60%.

В свободном, неэтерифицированном состоянии жирные кислоты в организме содержатся в небольшом количестве, например в крови, где они транспортируются в комплексе с белком альбумином.

Жирные кислоты липидов человека представляю! собой углеводородную неразветвлён-ную цепь, на одном конце которой находится карбоксильная группа, а на другом — метальная группа (ю-углеродный атом). Большинство жирных кислот в организме содержат чётное число атомов углерода — от 16 до 20 (табл. 8-1 и 8-2). Жирные кислоты, не содержащие двойных связей, называют насыщенными. Основной насыщенной жирной кислотой в липидах человека является пальмитиновая (до 30—35%). Жирные кислоты, содержащие двойные связи, называют ненасыщенными. Ненасыщенные жирные кислоты представлены моноеновыми (с одной двойной связью) и полиеновыми (с двумя и большим числом двойных связей). Если в составе жирной кислоты содержатся две и более двойных связей, то они располагаются через СН2-группу.

Таблица 8-1.
Строение жирных кислот

Примечания: Cn:m — число атомов углерода (п) и число двойных связей (гп) в молекуле жирной кислоты; w (6, 3) — номер углеродного атома, у которого находится первая двойная связь, считая от w- (метильного) атома углерода; D — позиция двойной связи, считая с первого, карбоксильного атома углерода; * — жирные кислоты, которые не синтезируются в организме (незаменимые); ** — арахидоновая кислота может синтезироваться из линолевой кислоты.

Таблица 8-2.
Состав жирных кислот подкожного жира человека

Имеется несколько способов изображения структуры жирных кислот. При обозначении жирной кислоты цифровым символом (табл. 8-1, вторая графа) общее количество атомов углерода представлено цифрой до двоеточия, после двоеточия указывают число двойных связей. Позицию двойной связи обозначают знаком А, после которого указывают номер атома углерода, ближайшего к карбоксилу, у которого находится двойная связь. Например, С18.1Δ9 означает, что жирная кислота содержит 18 атомов углерода и одну двойную связь у 9-го атома углерода, считая от углеродного атома карбоксильной группы. Позиция двойной связи может быть указана и другим способом — по расположению первой двойной связи, считая от метального ю-атома углерода жирной кислоты. Например, линоле-вая кислота может быть обозначена как С18:2Δ;9,12 или С18:2ω-6. По положению первой двойной связи от метального углерода по-лиеновые жирные кислоты делят на семейства ω-3 и ω-6.

Двойные связи в жирных кислотах в организме человека имеют цисконфигурацию. Это означает, что ацильные фрагменты находятся по одну сторону двойной связи. Цис-конфигурация двойной связи делает алифатическую цепь жирной кислоты изогнутой, что нарушает упорядоченное расположение насыщенных радикалов жирных кислот в фосфолипидах мембран (рис. 8-1) и снижает температуру плавления.

Рис. 8-1. Конфигурации радикалов жирных кислот. А - излом радикала жирной кислоты при двойной связи в цис-конфигура-ции; Б - нарушение упорядоченного расположения радикалов насыщенных жирных кислот в гидрофобном слое мембран ненасыщенной кислотой с цис-конфигурацией двойной связи

Чем больше двойных связей в жирных кислотах липидов, тем ниже температура их плавления. В таблице 8-1 выделены основные жирные кислоты в липидах человека.

Жирные кислоты с транс-конфигурацией двойной связи могут поступать в организм с пищей, например в составе маргарина. В этих кислотах отсутствует излом, характерный для цис-связи, поэтому жиры, содержащие такие ненасыщенные кислоты, имеют более высокую температуру плавления, т.е. более твёрдые по консистенции.

Большинство жирных кислот синтезируется в организме человека, однако полиеновые кислоты (линолевая и а-линоленовая) не синтезируются и должны поступать с пищей. Эти жирные кислоты называют незаменимыми, или эссенциальными. Основные источники поли-еновых жирных кислот для человека — жидкие растительные масла и рыбий жир, в котором содержится много кислот семейства ω-3 (табл. 8-1, 8-3).

Таблица 8-3.
Состав жирных кислот и температура плавления некоторых пищевых жиров

Примечания: сл. — кислоты, присутствующие в незначительных (следовых) количествах. В рыбьем жире, кроме указанных кислот, присутствуют 22:5 жирная кислота (клупанодоновая) — до 10% и 22:6 (цервоновая) — до 10%, которые необходимы для формирования структур фосфолипидов нервной системы человека. В других типах природных жиров они практически отсутствуют; * - жирные кислоты с числом атомов углерода от 4 до 10 содержатся в основном в липидах молока

Ацилглицеролы — сложные эфиры трёхатомного спирта глицерола и жирных кислот. Глицерол может быть связан с одной, двумя или тремя жирными кислотами, соответственно образуя моно-, ди- или триацилглицеролы (МАГ, ДА Г, ТАГ). Основную массу липидов в организме человека составляют триацилглицеролы — жиры. У человека с массой тела 70 кг в норме содержится до 10 кг жиров. Они запасаются в жировых клетках — адипоцитах и используются при голодании как источники энергии.

Моно- и диацилглицеролы образуются на промежуточных этапах распада и синтеза триацилглицеролов. Атомы углерода в глицероле по-разному ориентированы в пространстве (рис. 8-2), поэтому ферменты различают их и специфически присоединяют жирные кислоты у первого, второго и третьего атомов углерода.

Рис. 8-2. Пространственное расположение углеродных атомов глицерола

Номенклатура и состав природных триацилглицеролов. В молекуле природного жира содержатся разные жирные кислоты. Как правило, в позициях 1 и 3 находятся более насыщенные жирные кислоты, а во второй позиции — полиеновая кислота. В названии триацилглицерола перечисляются названия радикалов жирных кислот, начиная с первого углеродного атома глицерола, например пальмитоил-линоленоил-олеоилглицерол.

Жиры, содержащие преимущественно насыщенные кислоты, являются твёрдыми (говяжий, бараний жиры), а содержащие большое количество ненасыщенных кислот — жидкими.

Жидкие жиры или масла обычно имеют растительное происхождение (табл. 8-3).

Из животных пищевых жиров наиболее насыщен бараний жир, который практически не содержит незаменимых кислот. Ценными пищевыми жирами являются рыбий жир и растительные масла, содержащие незаменимые жирные кислоты. В организме рыб полиеновые жирные кислоты ω-3 и ω-6 также не синтезируются, рыбы получают их с пищей (водоросли, планктон).

 

 

Top.Mail.Ru
Top.Mail.Ru