Учебник для ВУЗОВ

БИОХИМИЯ

>>> Перейти на полный размер сайта >>>

       

Б. Цикл лимонной кислоты

Цикл лимонной кислоты (цитратный цикл, цикл Кребса, цикл трикарбоновых кислот, ЦТК) — заключительный этап катаболизма, в котором углерод ацетильного остатка ацетил-

КоА окисляется до 2 молекул СO2. Атомы водорода, освобождающиеся в окислительно-восстановительных реакциях, доставляются в ЦПЭ при участии NAD- и FAD-зависимых дегидрогеназ, в результате чего происходят синтез воды и окислительное фосфорилирование АДФ. Связь между атомами углерода в ацетил-КоА устойчива к окислению. В условиях организма окисление ацетильного остатка происходит в несколько этапов, образующих циклический процесс из 8 реакций (рис. 6-24).

Рис. 6-24. Общая схема цитратного цикла. Цифры 1-8 обозначают реакции цитратного цикла. Цикл начинается с того, что ацетильный остаток конденсируется с оксалоацетатом, в результате чего образуется шестиуглеродное соединение — цитрат. На образование цитрата в каждом обороте цикла расходуется одна молекула оксалоацетата; в результате завершения цикла происходит регенерация оксалоацетата. Таким образом, одна молекула оксалоацетата может многократно использоваться для окисления ацетильных остатков

1. Последовательность реакций цитратного цикла

Образование цитрата

В реакции образования цитрата углеродный атом метильной группы ацетил-КоА связывается с карбонильной группой оксалоацетата (рис. 6-24); одновременно расщепляется тиоэфирная связь и освобождается коэнзим A (AG0= —37,6 кДж/моль).

Равновесие реакции в клетке сильно сдвинуто вправо, о чём свидетельствует отрицательная величина стандартной свободной энергии. Реакция сопровождается потерей большого количества энергии в виде теплоты. Катализирует реакцию цитратсинтаза, фермент, локализованный в матриксе митохондрий.

Превращение цитрата в изоцитрат

Вторая реакция цитратного цикла — обратимое превращение цитрата в изоцитрат (рис. 6-24). Фермент, катализирующий эту реакцию, назван аконитазой по промежуточному продукту, цис-аконитовой кислоте, которая предположительно образуется в реакции. Однако это соединение не обнаруживается в свободном виде, так как не отделяется от активного центра фермента до завершения реакции.

Окислительное декарбоксилирование изоцитрата

Эту реакцию катализирует изоцитратдегид-рогеназа. Существуют 2 формы изоцитратдегид-рогеназы: одна содержит в качестве кофермента NAD+, вторая — NADP+. NAD-зависимый фермент локализован в митохондриях и участвует в ЦТК; (NADP-зависимый фермент, присутствующий и в митохондриях, и в цитоплазме, играет иную метаболическую роль). В результате действия этого фермента на изоцитрат образуется а-кетоглутарат (см. рис. 6-24). Реакция, катализируемая NAD-зависимой изоцитратдегидрогеназой, — самая медленная реакция цитратного цикла. АДФ — аллостерический активатор фермента.

Окислительное декарбоксилирование α-кетоглутарата

В этой реакции α-кетоглутарат подвергается окислительному декарбоксилированию с образованием в качестве конечных продуктов сукцинил-КоА, СO2 и NADH + Н+. В результате этой реакции образуется сукцинил-КоА (см. рис. 6-24).

Реакцию катализирует α-кетоглутаратдегид-рогеназный комплекс, который по структуре и функциям сходен с пируватдегидрогеназным комплексом (ПДК). Подобно ПДК, он состоит из 3 ферментов: а-кетоглутаратдекарбок-силазы, дигидролипоилтранссукцинилазы и дигидролипоилдегидрогеназы. Кроме того, в этот ферментный комплекс входят 5 коферментов: тиаминдифосфат, кофермент А, липоевая кислота, NAD+ и FAD. Существенное отличие этой ферментной системы от ПДК — то, что она не имеет сложного механизма регуляции, какой характерен для ПДК. В частности, в этом комплексе отсутствуют регуляторные субъединицы. Равновесие реакции окислительного декарбоксилирования а-ке-тоглутарата сильно сдвинуто в сторону образования сукцинил-КоА, и её можно считать однонаправленной.

Превращение сукцинил-КоА в сукцинат

Сукцинил-КоА — высокоэнергетическое соединение. Изменение свободной энергии гидролиза этого тиоэфира составляет AG0 = —35,7 кДж/моль. В митохондриях разрыв тиоэфирной связи сукцинил-КоА сопряжён с реакцией фосфорилирования гуанозиндифосфата (ГДФ) до гуанозин-трифосфата (ГТФ).

Сукцинил-КоА ↔ Сукцинат (AG0 = —10,36 кДж/моль).

Эту сопряжённую реакцию (см. рис. 6-24) катализирует сукцинаттиокиназа. Промежуточный этап реакции — фосфорилирование молекулы фермента по одному из гистидиновых остатков активного центра. Затем остаток фосфорной кислоты присоединяется к ГДФ с образованием ГТФ.

С ГТФ концевая фосфатная группа может переноситься на АДФ с образованием АТФ; эту обратимую реакцию катализирует нуклеозид-дифосфаткиназа.

ГТФ + АДФ ↔ ГДФ + АТФ.

Образование высокоэнергетической фосфо-ангидридной связи за счёт энергии субстрата (сукцинил-КоА) — пример субстратного фосфорилирования.

Дегидрирование сукцината

Образовавшийся на предыдущем этапе сукцинат превращается в фумарат под действием сукцинатдегидрогеназы (см. рис. 6-24). Этот фермент — флавопротеин, молекула которого содержит прочно связанный кофермент FAD.

Сукцинат дегидрогеназа прочно связана с внутренней митохондриальной мембраной. Она состоит из 2 субъединиц, одна из которых связана с FAD. Кроме того, обе субъединицы содержат железо-серные центры; одна — Fe2S2, а другая — Fe4S4. В железо-серных центрах атомы железа меняют свою валентность, участвуя в транспорте электронов.

Образование малата из фумарата

Образование малата происходит при участии фермента фумаратгидратазы (см. рис. 6-24). Этот фермент более известен как фумараза.

Фумараза — олигомерный белок, состоящий из 4 идентичных полипептидных цепей. Он расположен в матриксе митохондрий. Фумаразу относят к ферментам с абсолютной субстратной специфичностью: она катализирует гидратацию только транс-формы фумарата.

Дегидрирование малата

В заключительной стадии цитратного цикла малат дегидрируется с образованием оксалоацетата (см. рис. 6-24). Реакцию катализирует NAD-зависимая малатдегидрогеназа, содержащаяся в матриксе митохондрий.

Равновесие малатдегидрогеназной реакции сильно сдвинуто влево. Тем не менее, в интактных клетках эта реакция идёт слева направо, потому что продукт реакции, оксалоацетат, активно используется в цитратсинтазной реакции. В цитозоле содержится изоформа малат-дегидрогеназы, также NAD-зависимая, но не принимающая участие в цитратном цикле. Обе изоформы малатдегидрогеназы — димеры.

2. Общая характеристика и энергетическое значение цитратного цикла

Образованием оксалоацетата завершается один оборот цитратного цикла. В одном обороте цикла лимонной кислоты в 2 реакциях декарбоксилирования (превращение изоцитрата в α-кетоглутарат и α-кетоглутарата в сукцинил-КоА) происходит образование 2 молекул СO2. В 4 реакциях цитратного цикла происходит дегидрирование с образованием восстановленных коферментов: 3 молекул NADH+H+ и 1 молекулы FADH2 в составе сукцинатдегид-рогеназы.

Наконец, на один оборот цикла затрачивается 2 молекулы воды: одна — на стадии образования цитрата, вторая — на стадии гидратации фумарата.

Восстановленные коферменты (3 молекулы NADH и 1 молекула FADH2), образованные в цикле лимонной кислоты, отдают электроны в ЦПЭ на кислород — конечный акцептор электронов. Восстановленный кислород взаимодействует с протонами с образованием воды.

На каждую молекулу NADH при образовании молекулы воды в процессе тканевого дыхания синтезируются 3 молекулы АТФ, а на каждую молекулу FADH2 — 2 молекулы АТФ (рис. 6-25).

Рис. 6-25. Схема взаимосвязи общего пути катаболизма и ЦПЭ

Таким образом, каждый оборот цикла лимонной кислоты сопровождается синтезом 11 молекул АТФ путём окислительного фосфорилирования. Одна молекула АТФ образуется путём субстратного фосфорилирования.

В итоге на каждый ацетильный остаток, включённый в цитратный цикл, образуется 12 молекул АТФ.

3. Регуляция общего пути катаболизма

Скорость синтеза АТФ строго соответствует энергетическим потребностям клетки. Это достигается согласованной регуляцией всех этапов заключительного пути катаболизма, включающего превращение пирувата в ацетил-КоА, цитратный цикл и ЦПЭ. В большинстве тканей, где главная функция общего пути катаболизма — обеспечение клетки энергией, важную роль в регуляции играет дыхательный контроль.

Увеличение скорости утилизации АТФ для совершения различных видов работы увеличивает концентрацию АДФ, что ускоряет окисление NADH в ЦПЭ и, следовательно, повышает скорость реакций, катализируемых NAD-зави-симыми дегидрогеназами. Окисление пирувата и ацетил-КоА может происходить только в том случае, если электроны и протоны от NADH и FADH2 поступают в ЦПЭ. Таким образом, отношения АДФ/АТФ и NADH/NAD+ — главные модуляторы скорости реакций общего пути катаболизма (ОПК).

Как известно, скорость метаболических путей, которые должны обеспечивать постоянный уровень конечных продуктов, таких, как АТФ, регулируется на уровне реакций, катализируемых регуляторными ферментами. На заключительном этапе катаболизма наиболее важные регуляторные ферменты — пируватдегидрогеназный комплекс, цитратсинтаза, изоцитратдегидрогеназа и а-кетоглутаратдегидрогеназный комплекс.

Рефляция пируватдегидрогеназного комплекса. Регуляция на уровне ПДК имеет важное значение для обеспечения цитратного цикла «топливными» молекулами ацетил-КоА.

Образование ацетил-КоА из пирувата — необратимый ключевой этап метаболизма. Животные не способны к превращению ацетил-КоА в глюкозу. Активность пируватдегидрогеназного комплекса регулируется различными способами: доступностью субстратов, ингибированием продуктами реакции, аллостерически и путём ковалентной модификации.

Ковалентная модификация ПДК осуществляется фосфорилированием и дефосфорилиро-ванием. В состав ПДК входят 2 регуляторных субъединицы. Одна из них, киназа ПДК, фос-форилирует ПДК в определённых участках по остаткам серина. При фосфорилировании ПДК инактивируется. Другая регуляторная субъединица, фосфатаза, дефосфорилирует фермент, превращая его в активную форму (рис. 6-26).

Рис. 6-26. Регуляция пируватдегидрогеназного комплекса. ПДК аллостерически активируется АДФ, NAD+, КоА, Са2+ и пиру-ватом; ацетил-КоА, NADH и АТФ активируют киназу и ингибируют ПДК. Фосфатаза активируется Са2+

При повышении концентрации АДФ ПДК находится в нефосфорилированной активной форме. Этот эффект усиливается в некоторых клетках при повышении концентрации внутриклеточного Са2+, который активирует фосфатазу ПДК. Такой механизм активации ПДК особенно важен в мышцах и жировой ткани.

Продукты пируватдегидрогеназной реакции (ацетил-КоА и NADH) аллостерически активируют киназу ПДК. Активированная киназа фос-форилирует и инактивирует ПДК. Таким образом, при накоплении NADH и ацетил-КоА тормозится превращение пирувата в ацетил-КоА. Такая ситуация создаётся, например, в печени при голодании: из жировых депо в печень поступают жирные кислоты, из которых образуется ацетил-КоА. В присутствии высокомолекулярных жирных кислот ингибирование ПДК усиливается. Пируват при этом не окисляется и может быть использован для синтеза глюкозы (см. раздел 7).

Пируват аллостерически активирует нефосфорилированную форму ПДК, действуя согласованно с другими субстратами — NAD+ и КоА. Активация ПДК происходит также под влиянием инсулина. Один из эффектов инсулина — повышение концентрации внутримитохондри-ального Са2+. При повышении концентрации Са2+ ПДК активируется (см. рис. 6-26). Этот механизм особенно важен в жировой ткани, где ацетил-КоА необходим для синтеза жирных кислот (см. раздел 8). В клетках миокарда ПДК активируется адреналином, однако это влияние адреналина не связано с изменением концентрации цАМФ.

Регуляция цитратного цикла. В большинстве случаев скорость реакций в метаболических циклах определяется их начальными реакциями. В ЦТК важнейшая регуляторная реакция — образование цитрата из оксалоацетата и ацетил-КоА, катализируемая цитратсинтазой. Эта реакция ускоряется при повышении концентрации оксалоацетата — субстрата реакции и тормозится продуктом реакции — цитратом. Когда отношение NADH/NAD+ снижается, скорость окисления малата в оксалоацетат возрастает. Повышение концентрации оксалоацетата ускоряет цитратсинтазную реакцию. Скорость реакции снижается при повышении концентрации АТФ, сукцинил-КоА и длинноцепочечных жирных кислот. Однако точный механизм влияния этих метаболитов на цитратсинтазу недостаточно ясен (рис. 6-27).

Рис. 6-27. Регуляция общего пути катаболизма. 1 — ПДК активируется пируватом, NAD+, КоА; ингибируется NADH и ацетил-КоА; 2 — цитратсинтаза (реакция ускоряется при повышении концентрации оксалоацетата и замедляется при повышении концентрации цитрата, NADH, АТФ и сукцинил-КоА); 3 — изоцитратдегидрогеназа аллостерически активируется АДФ, ионами кальция, ингибируется NADH; 4 — α-кетоглутаратдегидрогеназный комплекс ингибируется NADH, АТФ и сукцинил-КоА, а активируется ионами кальция

Изоцитратдегидрогеназа, олигомерный фермент, состоит из 8 субъединиц. Присоединение изоцитрата к первой субъединице вызывает кооперативное изменение конформации других, увеличивая скорость присоединения субстрата. Фермент аллостерически активируется АДФ и Са2+, которые присоединяются к ферменту в разных аллостерических центрах. В присутствии АДФ конформация всех субъединиц меняется таким образом, что связывание изоцитрата происходит значительно быстрее. Таким образом, при концентрации изоцитрата, которая существует в митохондриальном матриксе, небольшие изменения концентрации АДФ могут вызвать значительное изменение скорости реакции. Увеличение активности изоцитратдегидрогеназы снижает концентрацию цитрата, что, в свою очередь, уменьшает ингибирование цитратсинтазы продуктом реакции. При повышении концентрации NADH активность фермента снижается.

α- Кетоглутаратдегидрогеназный ком плекс, имеющий сходное строение с пируватдегидро-геназным, в отличие от последнего, не имеет в своём составе регуляторных субъединиц. Главный механизм регуляции α-кетоглутаратдегид-рогеназного комплекса — ингибирование реакции NADH и сукцинил-КоА.

α-Кетоглутаратдегидрогеназный комплекс, как и изоцитратдегидрогеназа, активируется Са2+, а при повышении концентрации АТФ скорости обеих реакций снижаются.

В регуляции цитратного цикла существует множество дополнительных механизмов, обеспечивающих необходимый уровень метаболитов и их участие в других метаболических путях.

Компартментализация ферментов, участвующих в реакциях окислительного декарбоксилирования пирувата и цикла лимонной кислоты, играет важную роль в регуляции этих процессов.

Внутренняя мембрана митохондрий непроницаема для анионов и катионов, в том числе и для промежуточных продуктов цитратного цикла, которые могут быть перенесены через мембрану только при участии специальных белков. Поэтому ферменты цитратного цикла имеют больше возможностей для взаимодействия с продуктами предыдущих реакций, чем в случае свободного удаления этих продуктов из митохондрий.

Доступность субстратов возрастает также в результате образования ферментных комплексов. Малатдегидрогеназа и цитратсинтаза образуют непрочные комплексы, в которых цитратсинтаза может использовать оксалоацетат, непосредственно образующийся малатдегидро-геназой.

В ПДК и α-кетоглутаратдегидрогеназном комплексе субстраты непосредственно передаются от одного фермента к другому: только трансацил аза может взаимодействовать с промежуточным продуктом, связанным с ТДФ, а дигидро-липоилдегидрогеназа — с дигидролипоевой кислотой.

NAD+, NADH, КоА, ацетил-КоА и сукцинил-КоА не имеют транспортных белков в мембране митохондрий. Поэтому эти соединения не могут пройти через митохондриальную мембрану.

Накопление ацил-КоА производных, таких как ацетил-КоА или сукцинил-КоА, в митохондриальном матриксе ингибирует другие реакции, для которых необходим КоА.

Тесная связь цитратного цикла и ЦПЭ поддерживается благодаря использованию в этих реакциях общего фонда NAD+ и NADH.

 

 

Top.Mail.Ru
Top.Mail.Ru