Учебник для ВУЗОВ

БИОХИМИЯ

>>> Перейти на полный размер сайта >>>

       

II. Белки мембран

Если основная роль липидов в составе мембран заключается в стабилизации бислоя, то белки отвечают за функциональную активность мембран. Одни из них обеспечивают транспорт определённых молекул и ионов, другие являются ферментами, третьи участвуют в связывании цитоскелета с внеклеточным матриксом или служат рецепторами для гормонов, медиаторов, эйкозаноидов, липопротеинов, оксида азота (NО). На долю белков приходится от 30 до 70% массы мембран. Белки определяют особенности функционирования каждой мембраны.

Особенности строения и локализации белков в мембранах

Мембранные белки, контактирующие с гидрофобной частью липидного бислоя, должны быть амфифильными. Те учистки белка, которые взаимодействуют с углеводородным и цепями жирных кислот, содержат преимущественно неполярные аминокислоты. Участки белка, находящиеся в области полярных «головок», обогащены гидрофильными аминокислотными остатками.

Белки мембран различаются по своему положению в мембране (рис. 5-10). Они могут глубоко проникать в липидный бислой или даже пронизывать его — интегральные белки, либо разными способами прикрепляться к мембране — поверхностные белки.

Рис. 5-10. Расположение (локализация) белков в мембранах. Трансмембранные белки, например: 1 — гликофорин А; 2 — рецептор адреналина. Поверхностные белки: 3 — белки, связанные с интегральными белками, например, фермент сукци-натдегидрогеназа; 4 — белки, присоединённые к полярным «головкам» липидного слоя, например протеинкиназа С; 5 — белки, «заякоренные» в мембране с помощью короткого гидрофобного концевого домена, например, цитохром b ; 6 — «заякоренные» белки, ковалентно соединённые с липидом мембраны (например, фермент щелочная фосфатаза)

Поверхностные белки

Поверхностные белки часто прикрепляются к мембране, взаимодействуя с интегральными белками или поверхностными участками липидного слоя.

Белки, образующие комплексы с интегральными белками мембраны

Ряд пищеварительных ферментов, участвующих в гидролизе крахмала и белков, прикрепляется к интегральным белкам мембран микроворсинок кишечника.

Примерами таких комплексов могут быть сахараза-изомальтаза и мальтаза-гликоамилаза (см. раздел 7). Возможно, связь этих пищеварительных ферментов с мембраной позволяет с высокой скоростью гидролизовать субстраты и усваивать продукты гидролиза клеткой.

Белки, связанные с полярными «головками» липидов мембран

Полярные или заряженные домены белковой молекулы могут взаимодействовать с полярными «головками» липидов, образуя ионные и водородные связи. Кроме того, множество растворимых в цитозоле белков при определённых условиях могут связываться с поверхностью мембраны на непродолжительное время. Иногда связывание белка — необходимое условие проявления ферментативной активности. К таким белкам, например, относят протеинкиназу С, факторы свёртывания крови.

Закрепление с помощью мембранного «якоря»

«Якорем» может быть неполярный домен белка, построенный из аминокислот с гидрофобными радикалами. Примером такого белка может служить цитохром Ь5 мембраны ЭР. Этот белок участвует в окислительно-восстанови-тельных реакциях, как переносчик электронов (см. раздел 12).

Роль мембранного «якоря» может выполнять также ковалентно связанный с белком остаток жирной кислоты (миристиновой — С14 или пальмитиновой — С16). Белки, связанные с жирными кислотами, локализованы в основном на внутренней поверхности плазматической мембраны. Миристиновая кислота присоединяется к N-концевому глицину с образованием амидной связи. Пальмитиновая кислота образует тиоэфирную связь с цистеином или сложноэфирную с остатками серина и треонина.

Небольшая группа белков может взаимодействовать с наружной поверхностью клетки с помощью ковалентно присоединённого к С-концу белка фосфатидилинозитолгликана. Этот «якорь» — часто единственное связующее звено между белком и мембраной, поэтому при действии фосфолипазы С этот белок отделяется от мембраны. Трансмембранные (интегральные) белки

Некоторые из трансмембранных белков пронизывают мембрану один раз (гликофорин), другие имеют несколько участков (доменов), последовательно пересекающих бислой (рис. 5-11).

Рис. 5-11. Интегральные белки мембран, содержащие от 1 до 12 трансмембранных доменов. 1 - рецептор ЛПНП; 2 - ГЛЮТ-1 — транспортёр глюкозы; 3 - рецептор инсулина; 4 - адренорецептор

Транс мембранные домены, пронизывающие бислой, имеют конформацию а-спирали. Полярные остатки аминокислот обращены внутрь глобулы, а неполярные контактируют с мембранными липидами. Такие белки называют «вывернутыми» по сравнению с растворимыми в воде белками, в которых большинство гидрофобных остатков аминокислот спрятано внутрь, а гидрофильные располагаются на поверхности (рис. 5-12).

Рис. 5-12. Локализация неполярных (незакрашенные кружки) и полярных (закрашенные квадраты) аминокислот в растворимых и мембранных белках

Радикалы заряженных аминокислот в составе этих доменов лишены заряда и протониро-ваны (-СООН) или депротонированы (-NH2).

Гликозилированные белки

Поверхностные белки или домены интегральных белков, расположенные на наружной поверхности всех мембран, почти всегда гликози-лированы. Олигосахаридные остатки могут быть присоединены через амидную группу аспарагина или гидроксильные группы серина и треонина (рис. 5-13).

Рис. 5-13.Строение рецептора липопротеина низкой плотности (ЛПНП). 1 — внутриклеточный домен; 2 — трансмембранный домен; 3 — олигосахаридные остатки, присоединённые к ОН-группам серина или треонина; 4 — олигосахаридные остатки, присоединённые через амидную группу аспарагина; 5 — ЛПНП-связывающий домен

Олигосахаридные остатки защищают белок от протеолиза, участвуют в узнавании лигандов или адгезии.

Латеральная диффузия белков

Некоторые мембранные белки перемещаются вдоль бислоя (латеральная диффузия) или поворачиваются вокруг оси, перпендикулярно его поверхности.

Например, фермент фосфолипаза связываясь с цитоплазматической поверхностью мембраны, может латерально перемещаться по поверхности бислоя и гидролизовать несколько тысяч фосфолипидов в минуту до тех пор, пока не отделится от мембраны.

Латеральная диффузия интегральных белков в мембране ограничена, это связано с их большими размерами, взаимодействием с другими мембранными белками, элементами цитоскелета или внеклеточного матрикса.

Белки мембран не совершают перемещений с одной стороны мембраны на другую («флип-флоп» перескоки), подобно фосфолипидам.

 

 

Top.Mail.Ru
Top.Mail.Ru