Учебник для ВУЗОВ

БИОХИМИЯ

       

А. Спонтанные повреждения

Нарушения комплементарности цепей ДНК могут происходить спонтанно, т.е. без участия каких-либо повреждающих факторов, например в результате ошибок репликации, дезаминирования нуклеотидов, депуринизации.

Ошибки репликации

Точность репликации ДНК очень велика, но примерно один раз на 105—106 нуклеотидных остатков происходят ошибки спаривания, и тогда вместо пары нуклеотидов А—Т, G—С в дочернюю цепь ДНК оказываются включёнными нуклеотиды, некомплементарные нуклеотидам матричной цепи. Однако ДНК-полимеразы 5, е способны после присоединения очередного нуклеотида в растущую цепь ДНК делать шаг назад (в направлении от 3'- к 5'- концу) и вырезать последний нуклеотид, если он некомплементарен нуклеотиду в матричной цепи ДНК. Этот процесс исправления ошибок спаривания (или коррекция) иногда не срабатывает, и тогда в ДНК по окончании репликации остаются некомплементарные пары, тем более, что ДНК-полимераза а лишена корректирующего механизма и «ошибается» чаще, чем другие полимеразы.

При неправильном спаривании в первичной структуре дочерней цепи ДНК необычные основания не появляются, нарушена только комплементарность. Система репарации некомплементарных пар должна происходить только на дочерней цепи и производить замену некомплементарных оснований только в ней. Ферменты, участвующие в удалении неправильной пары нуклеотидов, распознают матричную цепь по наличию метилированных остатков аденина в последовательностях -GATC-. Пока основания нуклеотидных остатков в дочерней цепи неметилированы, ферменты должны успеть выявить ошибку репликации и устранить её.

Распознавание и удаление (первый этап) некомплементарного нуклеотида происходят при участии специальных белков mut S, mut L, mut H. Каждый из белков выполняет свою специфическую функцию. Mut S находит неправильную пару и связывается с этим фрагментом. Mut Н присоединяется к метилированному (по аденину) участку -GATC-, расположенному вблизи некомплементарной пары. Связующим между mut S и mut Н служит белок mut L, его присоединение завершает образование активного фермента. Формирование комплекса mut S, mut L, mut H на участке, содержащем ошибку, способствует проявлению у белка mut Н эндонуклеаз-ной активности. Ферментативный комплекс гидролизует фосфоэфирную связь в неметилирован-ной цепи (рис. 4-21).

Рис. 4-21. Система репарации ошибок репликации. 1 — белок mut S «узнаёт» некомплементарную пару и присоединяется в этом участке ДНК; 2 — белки mut Н взаимодействуют с метилированной по аденину последовательностью материнской цепи -GATC-; завершается формирование ферментативного комплекса после присоединения mut L; 3 — комплекс определяет вновь синтезированную цепь по отсутствию метилированного остатка аденина в последовательности -GATC- и разрывает её; 4 — экзонуклеаза удаляет фрагмент дочерней цепи ДНК, содержащий ошибку; 5 — ДНК-полимераза р по принципу комплементарности застраивает брешь; 6 — ДНК-лигаза 3‘-конец вновь синтезированного фрагмента соединяет с основной цепью и завершает репарацию ошибки

К свободным концам цепи присоединяется экзонуклеаза (второй этап). Отщепляя по одному нуклеотиду в направлении от 3'- к 5'- концу дочерней цепи, она устраняет участок, содержащий некомплементарную пару. Брешь застраивает ДНК-полимераза β (третий этап), соединение основного и вновь синтезированного участков цепи катализирует фермент ДНК-лигаза (четвёртый этап). Для успешного функционирования экзонуклеазы, ДНК-полимеразы β и ДНК-лигазы необходимо участие в репарации хеликазы и SSB-белков.

Депуринизация (апуринизация)

ДНК каждой клетки человека теряет за сутки около 5000 пуриновых остатков вследствие разрыва N-гликозидной связи между пурином и дезоксирибозой (рис. 4-22).

Рис. 4-22. Депуринизация — спонтанное удаление аденина или гуанина

Тогда в молекуле ДНК на месте этих оснований образуется участок, лишённый азотистых оснований, названный АП-сайтом (AP-site, или апуриновый сайт). Термин «АП-сайт» используют также в тех случаях, когда из ДНК выпадают пиримидиновые основания и образуются апи-римидиновые сайты (от англ. apurinic-apyrimidinic site).

Этот тип повреждений устраняет фермент ДНК-инсертаза (от англ. insert — вставлять), который может присоединять к дезоксирибозе основание в соответствии с правилом комплементарности. В этом случае нет необходимости разрезать цепь ДНК, вырезать неправильный нуклеотид и репарировать разрыв.

Дезаминирование

Реакции дезаминирования цитозина и превращение его в урацил (рис. 4-23), аденина в гипоксантин, гуанина в ксантин происходят значительно реже, чем депуринизация, и составляют 10 реакций на один геном в сутки.

Рис. 4-23. Продукты спонтанного дезаминирования различных оснований ДНК. Все продукты дезаминирования (урацил, гипоксантин, ксантин) нехарактерны для состава ДНК и поэтому довольно легко распознаются ферментами репарации

Исправление этого вида спонтанного повреждения происходит в 5 этапов (рис. 4-24). В репарации принимает участие ДНК-N-гликозилаза, гидролизующая связи между аномальным основанием и дезоксирибозой (первый этап), в результате образуется АП-сайт, который распознаёт фермент АП-эндонуклеаза (второй этап).

Рис. 4-24. Репарация АП-сайтов с участием ДНК-№глико-зилазы и АП-экзонуклеазы

Как только в цепи ДНК возникает разрыв, в работу вступает ещё один фермент — АП-экзонуклеаза, который отщепляет от цепи дезоксирибозу, лишённую основания (третий этап). В цепи ДНК появляется брешь размером в один нуклеотид. Следующий фермент ДНК-полимераза к З'-концу разорванной цепи присоединяет нуклеотид по принципу комплементарности (четвёртый этап). Чтобы соединить два свободных конца (З'-конец встроенного нуклеотида и 5'-конец основной цепи), требуется ещё один фермент — ДНК-лигаза (пятый этап).

Нерепарируемо и поэтому опасно дезаминирование метилированного цитозина. Продукт его спонтанного дезаминирования — тимин, нормальное для ДНК основание, которое не распознаётся ДНК-N-гликозилазой.

 

 

 

Top.Mail.Ru
Top.Mail.Ru