Учебник для ВУЗОВ

БИОХИМИЯ

       

Г. Получение рекомбинантных днк и их амплификация

ля работы с нуклеотидными последовательностями в генах и других участках ДНК необходимо иметь достаточное количество материала для исследования. Это непростая задача, особенно если источником ДНК служат ткани человека. Поэтому исследуемые фрагменты ДНК обычно предварительно амплифицируют (увеличивают количественно в миллионы раз), для того чтобы получать их в любое время и в неограниченном количестве. Исключительно ценным инструментом в решении этой проблемы оказалось использование рекомбинантных ДНК (т.е. ДНК, построенных из участков разного происхождения).

1. Получение рекомбинантных ДНК

Для получения таких молекул первоначально выделяют ДНК из 2 разных источников (рис. 4-65).

Рис. 4-65. Получение рекомбинантных ДНК. Два образца ДНК: ДНКХ и ДНКУ расщепляют одной и той же рестриктазой и получают фрагменты с «липкими» концами. При денатурации и последующем «отжиге» образуются рекомбинантные молекулы ДНКд и ДНКБ, первоначально соединённые друг с другом за счёт «липких» концов, затем сшиваемых ДНК-лигазой

Каждую из них в отдельности фрагментируют, используя одну и ту же рестриктазу, расщепляющую ДНК с образованием «липких» концов. После процедуры нагревания и медленного охлаждения (отжига) наряду с исходными молекулами ДНКХ и ДНКУ могут образовываться рекомбинантные молекулы, состоящие из фрагментов ДНКХ и ДНКу связанных между собой «липкими» копнами. Ковалентное сшивание фрагментов осуществляют с помощью ДНК-лигазы в присутствии АТФ как источника энергии.

В технологии рекомбинантных ДНК, кроме фрагментов ДНК, выделенных из клеток, содержащих ядра, используют ДНК, полученную с помощью обратной транскриптазы. При добавлении в реакционную среду 4 разных дезокси-рибонуклеозидтрифосфатов фермент на матрице мРНК по принципу комплементарности синтезирует ДНК-копию, или кДНК. Так как источником информации при образовании кДНК служит зрелая цитоплазматическая мРНК, то такая ДНК, в отличие от ДНК фрагментов, полученных при расщеплении геномной ДНК. эукариотов, не содержит интронов.

2. Клонирование ДНК

Для получения значительных количеств интересующего нас материала проводят клонирование ДНК, предполагающее встраивание нужного нам фрагмента ДНК в векторную молекулу ДНК (или вектор). Вектор обеспечивает проникновение этой рекомбинантной, или химерной, ДНК в бактериальные клетки. В качестве векторов используют плазмиды, фаги, ретро- и аденовирусы. Особенно часто в качестве вектора служит плазмидная ДНК.

Плазмиды — небольшие кольцевые двух цепочечные молекулы ДНК, присутствующие в бактериальных клетках в различном количестве копий. Они имеют автономную систему контроля репликации, которая поддерживает их количество в клетках на определённом уровне — от нескольких единиц до нескольких сотен копий геномов на клетку.

Используемую для клонирования плазмидную ДНК и интересующую нас ДНК расщепляют по определённому участку ресгриктазой, получают рекомбинантную ДНК, возвращают гибридную плазмиду в кольцевую форму и вводят в бактериальные клетки, т.е. осуществляют трансформацию бактерий. При размножении трансформированных бактерий происходит увеличение числа копий введённого в плазмиду фрагмента ДНК, г.е. таким способом чужеродный для бактерий генетический материал может быть получен в значительных количествах (рис. 4-66).

Рис. 4-66. Схема клонирования ДНК в бактериальных клетках

В качестве клонирующих векторов часто используют фаги. Если экзогенную ДНК вводят в эукариотические клетки, то эту процедуру пазы вают трансдукцией.

3. Полимеразная цепная реакция

Метод полимеразной цепной реакции (ПЦР), предложенный в 1983 г. Карри Мулл и сом (Нобелевская премия. 1993 г.), явился эпохальным открытием XX века в области молекулярной биологии. Он позволяет подвергать специфичной амплификации в условиях in vitro (в пробирке) участки ДНК длиной от нескольких десятков до нескольких сотен пар нуклеотидов, используя в качестве матрицы любые образцы ДНК. Необходимое условие для проведения ПЦР — знание нуклеотидной последовательности амплифици-руемой области. Участок исследуемой ДНК гибридизуют с двумя искусственно синтезированными праймерами — олигодезоксирибонук-леотидными последовательностями длиной от 15 до 30 пар нуклеотидов, которые комплементарны 3'-концам амплифицируемого участка на кодирующей и некодирующей нитях ДНК. Расстояние между праймерами определяет длину синтезируемых молекул. В качестве матрицы для синтеза продуктов ПЦР используют любой тип ДНК: геномную ДНК человека, различных видов про- и эукариотов, ДНК, выделенную из культур клеток, «библиотек» генов и других источников. Метод не требует больших количеств исследуемой ДНК, в принципе, достаточно даже одной молекулы, содержащейся в одном волосе на голове, одной капле крови или спермы.

Успех в разработке метода в значительной степени обусловлен использованием в качестве фермента термофильной ДНК-полимеразы, выделенной из бактерий, живущих в горячих источниках, и потому устойчивой к действию высоких температур.

Реакционная смесь для получения интересующей нас ДНК содержит исследуемую ДНК, субстраты реакции — 4 дНТФ, 2 праймера, термостабильную, или Taq-полимеразу и буфер, содержащий ионы Mg2+.

Один цикл полимеризации включает 3 этапа (рис. 4-67):

Рис. 4-67. Полимеразная цепная реакция

    плавление: на этой стадии реакционную смесь нагревают до температуры 90—97 °С. Исследуемая двуцепочечная ДНК денатурирует и переходит в однонитевую форму;

    гибридизация или отжиг ДНК с праймерами В результате снижения температуры до 50-60 °С происходит комплементарное связывание праймеров с цепями матричной ДНК и образование двухцепочечного участка на каждой из нитей ДНК;

    элонгация, удлинение нитей ДНК, комплементарных матричной ДНК, катализирует Taq-полимераза в направлении от 5'- к З'-концу.

Затем снова наступает этап плавления, когда за счёт повышения температуры синтез ДНК прекращается, и двунитевой участок между матричными и вновь синтезированными молекулами ДНК денатурирует. Во втором и последующих циклах праймеры гибридизируются с исходной матричной ДНК и с вновь синтезированными молекулами ДНК, количество которых нарастает в геометрической прогрессии. В последнем случае синтез ДНК заканчивается не из-за изменения температурного режима, а по достижении ДНК-полимеразой границы амплифицированного участка, что определяет строго определённый размер продукта с точностью до одного нуклеотида.

Каждый из этапов цикла имеет продолжительность от десятков секунд до 1—3 мин, в результате полный цикл длится от одной до нескольких минут.

Описанную процедуру амплификации ДНК проводят в автоматическом режиме в приборе — циклизаторе, или термоциклере, амплификаторе ДНК. Такой прибор позволяет задавать нужное количество циклов и выбирать оптимальные временные и температурные параметры. За 25—30 циклов число синтезированных копий ДНК достигает нескольких миллионов.

С помощью ПЦР можно получить достаточное количество копий участков ДНК, в которых предполагаются присутствие мутаций, полиморфизм сайтов, можно проводить ДНК-диагнос-тику инфицированности пациентов вирусными, бактериальными и грибковыми возбудителями болезней.

 

 

 

Top.Mail.Ru
Top.Mail.Ru