Учебник для 8 класса

ХИМИЯ

       

§ 18. Степень окисления

При изучении ионной и ковалентной полярной химических связей вы знакомились со сложными веществами, состоящими из двух химических элементов. Такие вещества называют бинарными (от лат. би — два) или двухэлементными.

Вспомним типичные бинарные соединения, которые мы приводили в качестве примера для рассмотрения механизмов образования ионной и ковалентной полярной химической связи: NaCl — хлорид натрия и НСl — хлороводород.

В первом случае связь ионная: атом натрия передал свой внешний электрон атому хлора и превратился при этом в ион с зарядом +1, а атом хлора принял электрон и превратился в ион с зарядом -1. Схематически процесс превращения атомов в ионы можно изобразить так:

В молекуле же хлороводорода НС1 химическая связь образуется за счёт спаривания неспаренных внешних электронов и образования общей электронной пары атомов водорода и хлора:

Правильнее представлять образование ковалентной связи в молекуле хлороводорода как перекрывание одноэлектронного s-облака атома водорода с одноэлектронным р-облаком атома хлора:

При химическом взаимодействии общая электронная пара смещена в сторону более электроотрицательного атома хлора: , т. е. электрон не полностью перейдёт от атома водорода к атому хлора, а частично, обусловливая тем самым частичный заряд атомов 5 (см. § 12): . Если же представить, что и в молекуле хлороводорода НСl, как и в хлориде натрия NaCl, электрон полностью перешёл от атома водорода к атому хлора, то они получили бы заряды +1 и -1: . Такие условные заряды называют степенью окисления. При определении этого понятия условно предполагают, что в ковалентных полярных соединениях связующие электроны полностью перешли к более электроотрицательному атому, а потому соединения состоят только из положительно и отрицательно заряженных ионов.

Степень окисления — это условный заряд атомов химического элемента в соединении, вычисленный на основе предположения, что все соединения (и ионные, и ковалентно-полярные) состоят только из ионов.

Степень окисления может иметь отрицательное, положительное или нулевое значения, которые обычно ставятся над символом элемента сверху, например:

Отрицательное значение степени окисления имеют те атомы, которые приняли электроны от других атомов или к которым смещены общие электронные пары, т. е. атомы более электроотрицательных элементов. Фтор всегда имеет степень окисления —1 во всех соединениях. Кислород, второй после фтора по значению электроотрицательности элемент, почти всегда имеет степень окисления —2, кроме соединений со фтором, например:

Положительное значение степени окисления имеют те атомы, которые отдают свои электроны другим атомам или от которых оттянуты общие электронные пары, т. е. атомы менее электроотрицательных элементов. Металлы в соединениях всегда имеют положительную степень окисления. У металлов главных подгрупп: I группы (IA группы) во всех соединениях степень окисления равна +1, II группы (IIA группы) равна +2, III группы (IIIA группы) — +3, например:

В большинстве соединений атомы водорода имеют степень окисления +1, например:

но в соединениях с металлами у водорода степень окисления -1:

Нулевое значение степени окисления имеют атомы в молекулах простых веществ и атомы в свободном состоянии, например:

К понятию «степень окисления» близко понятие «валентность», с которым вы знакомились, рассматривая ковалентную химическую связь. Однако это не одно и то же.

Понятие «валентность» применимо для веществ, имеющих молекулярное строение. Подавляющее большинство органических веществ, с которыми вы будете знакомиться в 10 классе, имеет именно такое строение. В курсе основной школы вы изучаете неорганическую химию, предметом которой являются вещества как молекулярного, так и немолекулярного, например ионного, строения. Поэтому предпочтительнее использовать понятие «степень окисления».

Чем же отличается валентность от степени окисления?

Часто валентность и степень окисления численно совпадают, но валентность не имеет знака заряда, а степень окисления — имеет. Например, одновалентный водород имеет следующие степени окисления в различных веществах:

Казалось бы, что одновалентный фтор — самый электроотрицательный элемент — должен иметь полное совпадение значений степени окисления и валентности. Ведь его атом способен образовывать лишь одну-единственную ковалентную связь, так как ему недостаёт до завершения внешнего электронного слоя одного электрона. Однако и здесь наблюдается различие:

Ещё более различаются между собой валентность и степень окисления, если они численно не совпадают. Например:

  • в пероксиде водорода степень окисления кислорода равна -1, а валентность равна II:

  • в серном колчедане степень окисления серы равна -1, а валентность — II:

  • в этилене степень окисления углерода равна -2, а валентность — IV:

В соединениях суммарная степень окисления всегда равна нулю. Зная это и степень окисления одного из элементов, можно найти степень окисления другого элемента по формуле, например бинарного соединения. Так, найдём степень окисления хлора в соединении С12O7.

Обозначим степень окисления кислорода: . Следовательно, семь атомов кислорода будут иметь общий отрицательный заряд (-2) × 7 = -14. Тогда общий заряд двух атомов хлора будет равен +14, а одного атома хлора: (+14) : 2 = +7. Следовательно, степень окисления хлора равна .

Аналогично, зная степени окисления элементов, можно составить формулу соединения, например карбида алюминия (соединения алюминия и углерода).

  1. Запишем знаки алюминия и углерода рядом А1С, причём сначала — знак алюминия, так как это металл, т. е. менее электроотрицательный элемент.
  2. Определим по Периодической системе Д. И. Менделеева число внешних электронов: у А1 — три электрона, у С — четыре. Атом алюминия отдаст свои три внешних электрона углероду и получит при этом степень окисления +3, равную заряду иона. Атом углерода, наоборот, примет недостающие до заветной восьмёрки четыре электрона и получит при этом степень окисления -4.
  3. Запишем эти значения в формулу .
  4. Найдём наименьшее общее кратное (НОК) для них, оно равно 12. Затем рассчитаем индексы, разделив НОК на соответствующие значения степеней окисления,

Нетрудно заметить, что аналогично вы работали с понятием «валентность», когда выводили формулу ковалентного соединения или определяли валентность элемента по формуле его соединения.

Названия бинарных соединений образуют из двух слов — названий входящих в их состав химических элементов. Первое слово обозначает электроотрицательную часть соединения — неметалл, его латинское название с суффиксом -ид стоит всегда в именительном падеже. Второе слово обозначает электроположительную часть — металл или менее электроотрицательный элемент, его название всегда стоит в родительном падеже:

Например: NaCl — хлорид натрия, MgS — сульфид магния, КН — гидрид калия, СаО — оксид кальция. Если же электроположительный элемент проявляет разные степени окисления, то это отражают в названии, обозначив степень окисления римской цифрой, которую ставят в конце названия, например: — оксид железа (II) (читают «оксид железа два»), — оксид железа (III) (читают «оксид железа три»).

Если соединение состоит из двух элементов-неметаллов, то к названию более электроотрицательного из них прибавляют суффикс -ид, второй компонент ставится после этого в родительном падеже. Например: — фторид кислорода (II), — оксид серы (IV) и — оксид серы (VI).

В некоторых случаях число атомов элементов обозначают при помощи названий числительных на греческом языке — моно, ди, три, тетра, пента, гекса и т. д. Например: — монооксид углерода, или оксид углерода (II), — диоксид углерода, или оксид углерода (IV), — тетрахлорид свинца, или хлорид свинца (IV).

Чтобы химики разных стран понимали друг друга, потребовалось создание единой терминологии и номенклатуры веществ. Принципы химической номенклатуры были впервые разработаны французскими химиками А. Лавуазье, А. Фуркруа, Л. Гитоном де Мерво и К. Бертолле в 1785 г. В настоящее время Международный союз теоретической и прикладной химии (ИЮПАК) координирует деятельность учёных разных стран и издаёт рекомендации по номенклатуре веществ и терминологии, используемой в химии.

Ключевые слова и словосочетания

  1. Бинарные, или двухэлементные, соединения.
  2. Степень окисления.
  3. Химическая номенклатура.
  4. Определение степеней окисления элементов по формуле.
  5. Составление формул бинарных соединений по степеням окисления элементов.

Работа с компьютером

  1. Обратитесь к электронному приложению. Изучите материал урока и выполните предложенные задания.
  2. Найдите в Интернете электронные адреса, которые могут служить дополнительными источниками, раскрывающими содержание ключевых слов и словосочетаний параграфа. Предложите учителю свою помощь в подготовке нового урока — сделайте сообщение по ключевым словам и словосочетаниям следующего параграфа.

Вопросы и задания

  1. Запишите формулы оксидов азота (II), (V), (I), (III), (IV).
  2. Дайте названия бинарных соединений, формулы которых: а) С1207, С12O, С1O2; б) FeCl2, FeCl3; в) MnS, MnO2, MnF4, MnO, MnCl4; r) Cu2O, Mg2Si, SiCl4, Na3N, FeS.
  3. Найдите по справочникам и словарям всевозможные названия веществ с формулами: а) СO2 и СО; б) SO2 и SO3. Объясните их этимологию. Дайте по два названия этих веществ по международной номенклатуре в соответствии с правилами, изложенными в параграфе.
  4. Какое ещё название можно дать аммиаку H3N?
  5. Найдите объём, который имеют при н. у. 17 г сероводорода.
  6. Сколько молекул его содержится в этом объёме?
  7. Вычислите массу 33,6 м3 метана СН2 при н. у. и определите число его молекул, содержащееся в этом объёме.
  8. Определите степень окисления углерода и запишите структурные формулы следующих веществ, зная, что углерод в органических соединениях всегда четырёхвалентен: метана СН4, тетрахлорметана СС14, этана С2Н4, ацетилена С2Н2.

 

 

 

Top.Mail.Ru
Top.Mail.Ru