Физика
Учебник для 9 класса

§ 62. Термоядерная реакция

Вы уже знаете, что в середине XX в. возникла проблема поиска новых источников энергии. В связи с этим внимание учёных привлекли термоядерные реакции.

  • Термоядерной называется реакция слияния лёгких ядер (таких как водород, гелий и др.), происходящая при температурах от десятков до сотен миллионов градусов

Создание высокой температуры необходимо для придания ядрам достаточно большой кинетической энергии — только при этом условии ядра смогут преодолеть силы электрического отталкивания и сблизиться настолько, чтобы попасть в зону действия ядерных сил. На таких малых расстояниях силы ядерного притяжения значительно превосходят силы электрического отталкивания, благодаря чему возможен синтез (т. е. слияние, объединение) ядер.

В § 58 на примере урана было показано, что при делении тяжёлых ядер может выделяться энергия. В случае с лёгкими ядрами энергия может выделяться при обратном процессе — при их синтезе. Причём реакция синтеза лёгких ядер энергетически более выгодна, чем реакция деления тяжёлых (если сравнивать выделившуюся энергию, приходящуюся на один нуклон).

Примером термоядерной реакции может служить слияние изотопов водорода (дейтерия и трития), в результате чего образуется гелий и излучается нейтрон:

Это первая термоядерная реакция, которую учёным удалось осуществить. Она была реализована в термоядерной бомбе и носила неуправляемый (взрывной) характер.

Как уже было отмечено, термоядерные реакции могут идти с выделением большого количества энергии. Но для того чтобы эту энергию можно было использовать в мирных целях, необходимо научиться проводить управляемые термоядерные реакции. Одна из основных трудностей в осуществлении таких реакций заключается в том, чтобы удержать внутри установки высокотемпературную плазму (почти полностью ионизированный газ), в которой и происходит синтез ядер. Плазма не должна соприкасаться со стенками установки, в которой она находится, иначе стенки обратятся в пар. В настоящее время для удерживания плазмы в ограниченном пространстве на соответствующем расстоянии от стенок применяются очень сильные магнитные поля.

Термоядерные реакции играют важную роль в эволюции Вселенной, в частности в преобразованиях химических веществ в ней.

Благодаря термоядерным реакциям, протекающим в недрах Солнца, выделяется энергия, дающая жизнь обитателям Земли.

Наше Солнце излучает в пространство свет и тепло уже почти 4,6 млрд лет. Естественно, что во все времена учёных интересовал вопрос о том, что является «топливом», за счёт которого на Солнце вырабатывается огромное количество энергии в течение столь длительного времени.

На этот счёт существовали разные гипотезы. Одна из них заключалась в том, что энергия на Солнце выделяется в результате химической реакции горения. Но в этом случае, как показывают расчёты, Солнце могло бы просуществовать всего несколько тысяч лет, что противоречит действительности.

Оригинальная гипотеза была выдвинута в середине XIX в. Она состояла в том, что увеличение внутренней энергии и соответствующее повышение температуры Солнца происходит за счёт уменьшения его потенциальной энергии при гравитационном сжатии. Она тоже оказалась несостоятельной, так как в этом случае срок жизни Солнца увеличивается до миллионов лет, но не до миллиардов.

Предположение о том, что выделение энергии на Солнце происходит в результате протекания на нём термоядерных реакций, было высказано в 1939 г. американским физиком Хансом Бете.

Им же был предложен так называемый водородный цикл, т. е. цепочка из трёх термоядерных реакций, приводящая к образованию гелия из водорода:

где — частица, называемая «нейтрино», что в переводе с итальянского означает «маленький нейтрон».

Чтобы получились два ядра , необходимые для третьей реакции, первые две должны произойти дважды.

Вы уже знаете, что в соответствии с формулой Е = mс2 с уменьшением внутренней энергии тела уменьшается и его масса.

Чтобы представить, какое колоссальное количество энергии теряет Солнце в результате превращения водорода в гелий, достаточно знать, что масса Солнца ежесекундно уменьшается на несколько миллионов тонн. Но, несмотря на потери, запасов водорода на Солнце должно хватить ещё на 5—6 миллиардов лет.

Такие же реакции протекают в недрах других звёзд, масса и возраст которых сравнимы с массой и возрастом Солнца.

Вопросы

  1. Какая реакция называется термоядерной? Приведите пример реакции.
  2. Почему протекание термоядерных реакций возможно только при очень высоких температурах?
  3. Какая реакция энергетически более выгодна (в расчёте на один нуклон): синтез лёгких ядер или деление тяжёлых?
  4. В чём заключается одна из основных трудностей при осуществлении термоядерных реакций?
  5. Какова роль термоядерных реакций в существовании жизни на Земле?
  6. Что является источником энергии Солнца по современным представлениям?
  7. На какой период должно хватить запаса водорода на Солнце по подсчётам учёных?

Это любопытно...

Элементарные частицы. Античастицы

Частицы, из которых состоят атомы различных веществ — электрон, протон и нейтрон, — назвали элементарными. Слово «элементарный» подразумевало, что эти частицы являются первичными, простейшими, далее неделимыми и неизменяемыми. Но вскоре оказалось, что эти частицы вовсе не являются неизменяемыми. Все они обладают способностью превращаться друг в друга при взаимодействии.

Поэтому в современной физике термин «элементарные частицы» обычно употребляется не в своём точном значении, а для наименования большой группы мельчайших частиц материи, не являющихся атомами или ядрами атомов (исключение составляет протон, представляющий собой ядро атома водорода и в то же время относящийся к элементарным частицам).

В настоящее время известно более 350 различных элементарных частиц. Частицы эти очень разнообразны по своим свойствам. Они могут отличаться друг от друга массой, знаком и величиной электрического заряда, временем жизни (т. е. временем с момента образования частицы и до момента её превращения в какую-либо другую частицу), проникающей способностью (т. е. способностью проходить сквозь вещество) и другими характеристиками. Например, большинство частиц являются «коротко-живущими» — они живут не более двух миллионных долей секунды, в то время как среднее время жизни нейтрона, находящегося вне атомного ядра, 15 мин.

Важнейшее открытие в области исследования элементарных частиц было сделано в 1932 г., когда американский физик Карл Дейвид Андерсон обнаружил в камере Вильсона, помещённой в магнитное поле, след неизвестной частицы. По характеру этого следа (по радиусу кривизны, направлению изгиба и пр.) учёные определили, что он оставлен частицей, которая представляет собой как бы электрон с положительным по знаку электрическим зарядом. Эту частицу назвали позитроном.

Интересно, что за год до экспериментального открытия позитрона его существование было теоретически предсказано английским физиком Полем Дираком (существование именно такой частицы следовало из выведенного им уравнения). Более того, Дирак предсказал так называемые процессы аннигиляции (исчезновения) и рождения электрон-позитронной пары. Аннигиляция заключается в том, что электрон и позитрон при встрече исчезают, превращаясь в γ-кванты (фотоны). А при столкновении γ-кванта с каким-либо массивным ядром происходит рождение электрон-позитронной пары.

Оба эти процесса впервые удалось пронаблюдать на опыте в 1933 г. На рисунке 166 показаны треки электрона и позитрона, образовавшихся в результате столкновения γ-кванта с атомом свинца при прохождении γ-лучей сквозь свинцовую пластинку. Опыт проводился в камере Вильсона, помещённой в магнитное поле. Одинаковая кривизна треков свидетельствует об одинаковой массе частиц, а искривление в разные стороны — о противоположных знаках электрического заряда.

Треки электрон-позитронной пары в магнитном поле

Рис. 166. Треки электрон-позитронной пары в магнитном поле

В 1955 г. была обнаружена еще одна античастица— антипротон (существование которой тоже вытекало из теории Дирака), а несколько позже — антинейтрон. Антинейтрон, так же как и нейтрон, не имеет электрического заряда, но он, бесспорно, относится к античастицам, поскольку участвует в процессе аннигиляции и рождения пары нейтрон—антинейтрон.

Возможность получения античастиц привела учёных к идее о создании антивещества. Атомы антивещества должны быть построены таким образом: в центре атома — отрицательно заряженное ядро, состоящее из антипротонов и антинейтронов, а вокруг ядра обращаются позитроны. В целом атом нейтрален. Эта идея тоже получила блестящее экспериментальное подтверждение. В 1969 г. на ускорителе протонов в г. Серпухове советские физики получили ядра атомов антигелия.

В настоящее время экспериментально обнаружены античастицы почти всех известных элементарных частиц.

Итоги главы. Самое главное

Ниже даны физические понятия и явления. Последовательность изложения определений и формулировок не соответствует последовательности понятий и т. п.

Перенесите в тетрадь названия понятий и в квадратные скобки впишите порядковый номер определения (формулировки), соответствующего данному понятию.

  • Радиоактивность [ ];
  • ядерная (планетарная) модель строения атома [ ];
  • атомное ядро [ ];
  • радиоактивные превращения атомных ядер [ ];
  • экспериментальные методы изучения частиц в атомной и ядерной физике [ ];
  • ядерные силы [ ];
  • энергия связи ядра [ ];
  • дефект масс атомного ядра [ ];
  • цепная реакция [ ];
  • ядерный реактор [ ];
  • экологические и социальные проблемы, возникающие при использовании АЭС [ ];
  • поглощённая доза излучения [ ].
  1. Регистрация частиц с помощью счётчика Гейгера, изучение и фотографирование треков частиц (в том числе участвовавших в ядерных реакциях) в камере Вильсона и пузырьковой камере.
  2. Силы притяжения, действующие между нуклонами в ядрах атомов и значительно превосходящие силы электростатического отталкивания между протонами.
  3. Минимальная энергия, необходимая для расщепления ядра на отдельные нуклоны.
  4. Самопроизвольное излучение атомами некоторых элементов радиоактивных лучей.
  5. Устройство, предназначенное для осуществления управляемой ядерной реакции.
  6. Состоит из нуклонов (т. е. из протонов и нейтронов).
  7. Радиоактивные отходы, возможность аварий, содействие распространению ядерного оружия.
  8. Атом состоит из расположенного в его центре положительно заряженного ядра, вокруг которого на расстоянии, значительно превышающем размер ядра, обращаются электроны.
  9. Превращение одного химического элемента в другой при α- или β-распаде, в результате которого ядро исходного атома претерпевает изменения.
  10. Разность между суммой масс нуклонов, образующих ядро, и массой этого ядра.
  11. Самоподдерживающаяся реакция деления тяжёлых ядер, в которой непрерывно воспроизводятся нейтроны, делящие всё новые и новые ядра.
  12. Энергия ионизирующего излучения, поглощённая излучаемым веществом (в частности, тканями организма) и рассчитанная на единицу массы.

Проверь себя

  1. α-Распад представлен уравнением реакции

  2. Поглощённая доза излучения определяется по формуле

  3. Взаимосвязь между изменением энергии покоя и дефектом массы представлена уравнением

  4. Примером термоядерной реакции является реакция

 

Рейтинг@Mail.ru