Физика
Учебник для 9 класса

§ 44. Электромагнитные волны

Из созданной Максвеллом теории можно сделать вывод о том, что быстропеременное электромагнитное поле должно распространяться в пространстве в виде поперечных волн. Причём эти волны могут существовать не только в веществе, но и в вакууме. Опираясь исключительно на теоретические выводы, Максвелл определил также, что электромагнитные волны должны распространяться в вакууме со скоростью 300 000 км/с, т. е. со скоростью света (скорость света, как известно, была измерена задолго до этого).

Вы уже знаете, что в механических волнах, например в звуковых, энергия передаётся от одних частиц среды к другим. При этом частицы приходят в колебательное движение, т. е. их смещение от положения равновесия периодически меняется. Для передачи звука обязательно нужна вещественная среда.

В связи с тем, что электромагнитные волны распространяются в веществе и в вакууме, возникает вопрос: что совершает колебания в электромагнитной волне, т. е. какие физические величины периодически меняются в ней?

  • Электромагнитная волна представляет собой систему порождающих друг друга и распространяющихся в пространстве переменных электрического и магнитного полей

Напомним, что количественной характеристикой магнитного поля является вектор магнитной индукции В.

Основной количественной характеристикой электрического поля служит векторная величина, называемая напряжённостью электрического поля, которая обозначается символом Е. Напряжённость Е электрического поля в какой-либо его точке равна отношению силы F, с которой поле действует на точечный положительный заряд, помещённый в эту точку, к значению этого заряда q.

Когда говорят, что магнитное и электрическое поля меняются, то это означает, что меняются соответственно вектор индукции магнитного поля В и вектор напряжённости электрического поля Е.

В электромагнитной волне именно векторы В и Е периодически меняются по модулю и по направлению, т. е. колеблются.

Модель электромагнитной волны

Рис. 135. Модель электромагнитной волны: Е — напряжённость электрического поля, В — индукция магнитного поля; с — скорость волны

На рисунке 135 изображены вектор напряжённости электрического поля Е и вектор индукции магнитного поля В электромагнитной волны в один и тот же момент времени. Это как бы «моментальный снимок» волны, распространяющейся в направлении оси Z. Плоскость, проведённая через векторы В и Е в любой точке, перпендикулярна направлению распространения волны, что говорит о поперечности волны.

За время, равное периоду колебаний, волна переместится вдоль оси Z на расстояние, равное длине волны. Для электромагнитных волн справедливы те же соотношения между длиной волны λ, её скоростью с, периодом Т и частотой v колебаний, что и для механических волн:

Максвелл не только научно обосновал возможность существования электромагнитных волн, но и указал, что для создания интенсивной электромагнитной волны, которую можно было бы зарегистрировать приборами на некотором расстоянии от источника, необходимо, чтобы колебания векторов Е и В происходили с достаточно высокой частотой (порядка 100 000 колебаний в секунду и больше).

Генрих Герц

Генрих Герц (1857-1894)
Немецкий физик, один из основоположников электродинамики. Экспериментально доказал существование электромагнитных волн

В 1888 г. немецкому учёному Генриху Герцу удалось получить и зарегистрировать электромагнитные волны. В результате опытов Герца были также обнаружены все свойства электромагнитных волн, теоретически предсказанные Максвеллом.

Всё окружающее нас пространство буквально пронизано электромагнитными волнами различных частот. В настоящее время все электромагнитные волны разделены по длинам волн (и соответственно по частотам) на шесть основных диапазонов, которые представлены на рисунке 136.

Шкала электромагнитных волн

Рис. 136. Шкала электромагнитных волн

Границы диапазонов весьма условны, поэтому, как видно из рисунка, в большинстве случаев соседние диапазоны несколько перекрывают друг друга.

Электромагнитные волны разных частот отличаются друг от друга проникающей способностью, скоростью распространения в веществе, видимостью, цветностью и некоторыми другими свойствами.

Они могут оказывать как положительное, так и отрицательное воздействие на живые организмы. Например, инфракрасное, т. е. тепловое, излучение играет определяющую роль в поддержании жизни на Земле, поскольку люди, животные и растения могут существовать и нормально функционировать только при определённых температурах.

Видимый свет даёт нам информацию об окружающем мире и возможность ориентироваться в пространстве. Он необходим также для протекания процесса фотосинтеза в растениях, в результате чего выделяется кислород, необходимый для дыхания живых организмов.

Влияние на человека ультрафиолетового излучения (вызывающего загар) в большой степени определяется интенсивностью и продолжительностью облучения. В допустимых дозах оно повышает сопротивляемость организма человека к различным заболеваниям, в частности инфекционным. Превышение допустимой дозы может вызвать ожоги кожи, развитие онкологических заболеваний, ослабление иммунитета, повреждение сетчатки глаз. Глаза можно защитить с помощью стеклянных очков (как тёмных, так и прозрачных, но не пластиковых), так как стекло поглощает значительную часть ультрафиолетовых лучей.

Вы знакомы и с рентгеновским излучением, в частности с его широким применением в медицине — флюорографическое обследование или рентгеновский снимок наверняка делали каждому из вас. Но слишком большие дозы или частые обследования с помощью рентгеновских лучей могут вызвать серьёзные заболевания.

Получение электромагнитных волн имеет огромное научное и практическое значение. В этом можно убедиться на примере всего лишь одного диапазона — радиоволн, применяемых для телевизионной и радиосвязи, в радиолокации (т. е. для обнаружения объектов и измерения расстояния до них), в радиоастрономии и других сферах деятельности.

Вопросы

  1. Какие выводы относительно электромагнитных волн можно сделать из теории Максвелла?
  2. Какие физические величины периодически меняются в электромагнитной волне?
  3. Какие соотношения между длиной волны, её скоростью, периодом и частотой колебаний справедливы для электромагнитных волн?
  4. При каком условии волна будет достаточно интенсивной для того, чтобы её можно было зарегистрировать?
  5. Когда и кем были впервые получены электромагнитные волны?
  6. Приведите примеры применения разных диапазонов электромагнитных волн и их воздействия на живые организмы.

Упражнение

  1. На какой частоте суда передают сигнал бедствия SOS, если по международному соглашению длина радиоволны должна быть 600 м?
  2. Радиосигнал, посланный с Земли на Луну, может отразиться от поверхности Луны и вернуться на Землю. Предложите способ измерения расстояния между Землёй и Луной с помощью радиосигнала.

    Указание: задача решается таким же методом, каким измеряется глубина моря с помощью эхолокации (см. § 30).

  3. Можно ли измерить расстояние между Землёй и Луной с помощью звуковой или ультразвуковой волны? Ответ обоснуйте.

 

Рейтинг@Mail.ru