Учебник для 10 класса

ФИЗИКА

       

§ 5.3. Эквивалентность количества теплоты и работы

  • Исторический процесс изучения тепловых явлений, приведший к формулировке закона сохранения энергии, был длительным и трудным. До середины XIX в. развитие механики и теории тепловых явлений шло в основном независимо. Различны были методы исследования механических и тепловых явлений, способы измерения и единицы таких величин, как работа и количество теплоты. Огромный прогресс в представлениях о природе теплоты был достигнут тогда, когда было доказано, что при теплообмене сохраняется энергия, а не особое вещество — теплород.

Нагревание тела, как показали эксперименты, может происходить без сообщения ему какого-либо количества теплоты, а только за счет совершения работы. Убедиться в этом нетрудно. Возьмите обыкновенную резинку и энергично потрите ею о стол. Приложив после этого резинку к щеке, вы обнаружите, что она нагрелась.

В больших масштабах наблюдал подобное явление еще в 1798 г. Б. Румфорд. При сверлении пушечного ствола, которое производили с помощью лошадей, вращавших большое тупое сверло, Румфорд успевал вскипятить поставленный на ствол котел с водой. Румфорд предположил, что вода нагревается в процессе совершаемой при сверлении работы.

Известно, что без смазки, уменьшающей трение, работа сил трения приводит к такому нагреванию, что плавятся подшипники (например, у коленчатого вала автомобиля). В современных быстрорежущих сверлильных и токарных станках нагрев сверл и резцов настолько велик, что для их охлаждения применяют специальные жидкости.

С помощью трения сухих кусочков дерева можно добыть огонь, т. е. нагреть дерево до температуры, превышающей температуру его воспламенения. Это умело использовали первобытные люди.

Перечисленные выше и подобные им многочисленные опыты показали, что количество теплоты сохраняется только при теплообмене, когда не совершается работа. Количество теплоты не является неуничтожимой и несотворимой жидкостью, оно представляет собой величину, родственную работе. Одинаковое повышение температуры тела может быть вызвано как передачей некоторого количества теплоты Q, так и совершением определенной работы А. Но работа в механике равна изменению энергии системы. Поэтому количество теплоты, как и работу, надо считать мерой изменения энергии системы и выражать ее в тех же единицах, что и работу, т. е. в джоулях.

Опыты Джоуля

Первые точные опыты, доказывающие эквивалентность количества теплоты, переданного телу, и работы, были выполнены английским ученым Д. Джоулем в середине XIX в.

Интерес к проблеме впервые возник у Джоуля из знакомства с электрическими двигателями, которые только что были изобретены. Джоуль был человеком весьма практического склада ума, и его увлекла идея создать вечный источник энергии. Он изготовил вольтову батарею, запустил от нее примитивный электродвигатель собственной конструкции и увидел, что получить нечто из ничего не удается: цинк в батарее съедался и замена его обходилась довольно дорого. (Позже Джоуль доказал, к своему собственному удовольствию, что прокормить лошадь всегда дешевле, чем менять цинк в батареях, так что лошадь никогда не будет вытеснена электродвигателем.) Это побудило Джоуля исследовать связь между теплотой и энергией всех видов, и он решил выяснить, существует ли точное количественное соотношение между теплотой и механической энергией.


Джоуль Джеймс Прескотт (1818—1889) — выдающийся английский физик, один из первооткрывателей закона сохранения энергии. Джоуль первым осуществил очень точные измерения механического эквивалента теплоты. Наряду с Э. X. Ленцем установил закон для определения количества теплоты, выделяемой электрическим током (закон Джоуля—Ленца).


Джоуль провел много различных экспериментов. В одном из них он измерял увеличение температуры ртути в калориметре при вращении лопастей, которые приводились в движение опускающимися грузами (рис. 5.7). В начале и конце опыта грузы, лопасти и ртуть в калориметре (рис. 5.8) находились в покое, так что их кинетическая энергия за время опыта не менялась.

Рис. 5.7 и 5.8

Зная работу, совершаемую грузами при движении(1), и измеряя увеличение температуры при трении лопастей о ртуть, Джоуль пришел к следующему результату: при совершении работы 4,2 Дж происходит такое же повышение температуры, как и при сообщении телу количества теплоты, равного 1 кал.

Механический эквивалент теплоты

Многочисленные последующие опыты самого Джоуля и других ученых подтвердили сделанный вывод. Было экспериментально доказано, что калория есть не что иное, как тепловая единица энергии. Величина 4,2 Дж/кал (или, точнее, 4,1868 Дж/кал) получила название механического эквивалента теплоты: это переводной множитель из тепловых единиц в механические(2).

В СИ количество теплоты выражают в джоулях, а удельную теплоемкость — в джоулях на килограмм-кельвин. Для воды удельная теплоемкость примерно равна 4190 Дж/(кг • К).

Количество переданной теплоты оказалось эквивалентным работе: механический эквивалент теплоты 4,2 Дж/кал.


(1) Эта работа в условиях опыта Джоуля равнялась изменению потенциальной энергии грузов при движении их вниз.

(2) Д. Джоуль получил значение 4,155 Дж/кал. Столетний опыт усовершенствования техники измерений улучшил результат Джоуля менее чем на 1%. Измерения Джоуля были выполнены с завидной точностью.

 

 

 

Top.Mail.Ru
Top.Mail.Ru