Физика
Учебник для 10-11 классов

   

Роль электромагнитных сил в природе и технике

Место электродинамики в современной физике

В механике изучают различные виды движения макроскопических тел под действием определенных сил, в молекулярной физике — хаотическое движение атомов и молекул, составляющее основу тепловых процессов. Природу же сил, их происхождение не исследуют ни в рамках механики, ни в молекулярной физике.

Для расчета движения тел в механике достаточно знать, чему равна сила количественно. А знать значения сил, определить, когда и как они действуют, можно и не вникая в природу сил, а лишь располагая способами их измерения. Гравитационные силы, силы упругости и силы трения, с которыми преимущественно имеют дело в классической механике, определяются экспериментально. Из этих трех типов сил только гравитационные силы являются фундаментальными, т. е. не сводимыми ни к каким более общим и глубоким взаимодействиям. Силы упругости и трения не фундаментальны: они представляют собой сложное проявление электромагнитных сил. В электродинамике рассматриваются как раз фундаментальные силы, имеющие электромагнитную природу и действующие между электрически заряженными частицами. Изучение этих взаимодействий приводит нас к одному из самых глубоких понятий физики — понятию электромагнитного поля.

Электродинамика — это наука о свойствах и закономерностях поведения особого вида материи — электромагнитного поля, осуществляющего взаимодействие между электрически заряженными телами или частицами.

Четыре типа фундаментальных взаимодействий

Несмотря на видимое разнообразие действий тел друг на друга, все взаимодействия, все силы сводятся к четырем типам: гравитационные, электромагнитные, сильные (ядерные) и слабые взаимодействия. Чтобы наглядно представить себе роль электромагнитных сил в природе, остановимся бегло на главных особенностях всех четырех фундаментальных взаимодействий и укажем сферу их действия (см. табл. 1). Таблица 1

Тип взаимодействия

Сравнительная интенсивность

Радиус действия, см

Сфера действия

Гравитационные

10-39

оо

Космос

Сильные

100

10-13

Ядра и элементарные частицы

Слабые

10-14

10-16

Превращения элементарных частиц

Электромаг-
нитные

1

оо

От атомного ядра и элементарных частиц до космоса

Из всех фундаментальных сил в первую очередь были открыты гравитационные. Эти силы абсолютно универсальны: они действуют между всеми объектами, обладающими массой, а массой обладают все тела и частицы. Исключение не составляют даже свет и само гравитационное поле. Гравитационные силы медленно (пропорционально — ) убывают с расстоянием.

Но они чрезвычайно слабы: самые слабые силы в природе. Именно поэтому их роль существенна лишь при взаимодействии космических тел. Эти силы определяют строение Вселенной в целом, строение галактик, звезд и планетных систем.

Сильные взаимодействия (ядерные силы) не универсальны. В сильных взаимодействиях участвует большинство элементарных частиц. Исключение составляет группа элементарных частиц — лептоны, фотоны и переносчики слабых взаимодействий (векторные бозоны). К лептонам относится электрон. Короткодействующий характер ядерных сил определяет сферу их действия — атомные ядра. Эти самые мощные силы природы обеспечивают устойчивость атомных ядер.

Слабые взаимодействия так же универсальны, как и гравитационные. Все частицы участвуют в слабых взаимодействиях. Эти взаимодействия являются еще более короткодействующими, чем ядерные силы. Распад большинства элементарных частиц обусловлен этими силами. Связанных систем частиц слабые взаимодействия не образуют.

Электромагнитные взаимодействия

Все остальные силы, проявляющиеся в природе и используемые в технике, имеют электромагнитную природу. В повседневной жизни, за исключением притяжения к Земле и приливов, мы встречаемся в основном только с различными проявлениями электромагнитных сил. В частности, упругая сила пара имеет электромагнитную природу. Поэтому смена «века пара» «веком электричества» означала лишь смену эпохи, когда мы не умели управлять электромагнитными силами, эпохой, когда мы научились распоряжаться ими по своему усмотрению.

Трудно даже перечислить все проявления электромагнитных сил. Они определяют устойчивость атомов, объединяют атомы в молекулы, обусловливают взаимодействие между атомами и молекулами, приводящее к образованию конденсированных (жидких и твердых) сред. Все виды сил упругости и трения имеют электромагнитную природу; силы мышц и вся жизнедеятельность нашего организма и организмов животных основаны на электромагнитных взаимодействиях. То же самое относится и ко всем растениям.

Велика роль электрических сил в ядре атома. В атомном реакторе и при взрыве атомной бомбы именно эти силы разгоняют осколки ядер и приводят к выделению огромной энергии. Наконец, взаимодействие между телами осуществляется посредством электромагнитных волн: свет, радиоволны, тепловое излучение и др.

Электромагнитные силы не универсальны. Они действуют лишь между электрически заряженными частицами. В чем же тогда состоит причина такой необычайно широкой сферы действия электромагнитных сил? Почему именно они определяют структуру материи и физические процессы в огромной области пространственных масштабов — от 10-15 до 107 см (на меньших расстояниях определяющими становятся ядерные взаимодействия, а на больших нужно учитывать и гравитационные силы)?

Главная причина состоит в том, что вещество построено из электрически заряженных частиц — электронов и атомных ядер. Причем имеются заряды двух знаков: положительные и отрицательные, что обеспечивает существование как сил притяжения, так и сил отталкивания. И эти силы очень велики по сравнению с гравитационными.

Электромагнитные силы медленно, как - , убывают с расстоянием, подобно гравитационным силам. Но заряженные частицы образуют нейтральные системы — атомы и молекулы, силы взаимодействия между которыми проявляются лишь на очень малых расстояниях. Существен еще сложный характер электромагнитных взаимодействий: они зависят не только от расстояний между заряженными частицами, но и от их скоростей и даже ускорений.

Роль электродинамики в технике

К созданию электродинамики привела длинная цепь планомерных исследований и случайных открытий, начиная с обнаружения способности янтаря, потертого о шерсть, притягивать легкие предметы и кончая гипотезой Максвелла о порождении магнитного поля переменным электрическим полем.

Лишь во второй половине XIX в., после создания Максвеллом классической электродинамики, началось широкое практическое использование электромагнитных явлений. Изобретение радио А. С. Поповым и Г. Маркони — одно из важнейших применений принципов новой теории.

При развитии электродинамики впервые в истории человечества научные исследования предшествовали техническим применениям. Если паровая машина была построена задолго до создания термодинамики, то сконструировать электродвигатель или осуществить радиосвязь оказалось возможным только после открытия и изучения законов электродинамики.

Бесчисленные практические применения электромагнитных явлений преобразовали жизнь людей на земном шаре. Человечество создало вокруг себя некую новую «электрическую среду» со штепсельной розеткой на каждой стенке.

Широкое применение электродинамики связано с тем, что электрическую энергию легко передавать по проводам на большие расстояния и, главное, с помощью сравнительно несложных устройств преобразовывать в другие энергии: механическую, внутреннюю, энергию излучения и т. д.

Законы электродинамики лежат в основе всей электротехники и радиотехники, включая телевидение, видеозапись и почти все средства связи. Электродинамика составляет фундамент таких актуальных направлений современной физики, как физика плазмы и проблема управляемых термоядерных реакций, нелинейная оптика, магнитная гидродинамика, астрофизика, конструирование вычислительных машин, ускорителей элементарных частиц и т. д.

Границы применимости классической электродинамики

Как и любая другая физическая теория, классическая электродинамика Максвелла не является абсолютно точной. Она имеет определенные границы применимости.

Максвелл Джеймс Клерк (1831—1879) — великий английский физик, создатель теории электромагнитного поля. Уравнения Максвелла для электромагнитного поля лежат в основе всей электродинамики, подобно тому как законы Ньютона составляют основу классической механики. Максвелл является также одним из основателей молекуляр-но-кинетической теории строения вещества. Он впервые ввел в физику представления о статистических законах, использующих математическое понятие вероятности.

Создание теории относительности не внесло каких-либо принципиальных изменений в электродинамику Максвелла. Напротив, именно развитие электродинамики привело в начале XX в. к созданию теории относительности. Дело в том, что электромагнитные процессы связаны с большими скоростями распространения взаимодействий. Теория Максвелла, описывающая эти взаимодействия, применима для процессов, протекающих с любыми скоростями, меньшими скорости света.

Границы применимости классической электродинамики устанавливаются квантовой теорией. Классическая электродинамика успешно описывает поведение электромагнитного поля при достаточно малых частотах колебаний этого поля. Чем больше частота колебаний, тем отчетливее обнаруживаются квантовые (корпускулярные) свойства электромагнитного поля. Подробнее этот вопрос мы обсудим в дальнейшем.

Область применимости классической электродинамики очень велика. И в рамках этой области человечество всегда будет пользоваться теорией Максвелла. По мнению американского физика Р. Фейнмана, «в истории человечества (если посмотреть на нее, скажем, через десять тысяч лет) самым значительным событием XIX столетия, несомненно, будет открытие Максвеллом законов электродинамики. На фоне этого великого открытия гражданская война в Америке в том же десятилетии будет выглядеть мелким провинциальным происшествием».

Наша задача в дальнейшем будет состоять в изучении основных законов электромагнитных взаимодействий, а также в знакомстве со способами получения электрической энергии и использованием ее на практике. Электрический заряд и элементарные частицы
Трудности определений

Со словами «электричество», «электрический заряд», «электрический ток» вы встречались много раз и успели к ним привыкнуть. Но попробуйте ответить на вопрос: «Что такое электрический заряд?» — и вы убедитесь, что это не так-то просто.

Дело в том, что дать краткое, удовлетворительное во всех отношениях определение заряда вообще невозможно. Важно уяснить себе именно это. Мы привыкли находить понятные нам объяснения весьма сложных образований и процессов вроде атома, жидких кристаллов, распределения молекул по скоростям и т. д. Действительно, такое сложное образование, как атом, не так уж трудно пояснить, хотя его нельзя видеть не только простым глазом, но и в микроскоп. В центре атома находится ядро, а вокруг него движутся электроны. А вот самые основные, фундаментальные понятия, нерасчленимые на более простые, лишенные, по данным науки на сегодняшний день, какого-либо внутреннего механизма, кратко удовлетворительным образом уже не пояснить. Особенно если объекты непосредственно не воспринимаются нашими органами чувств. Именно к таким фундаментальным понятиям относится электрический заряд.

Электрический заряд

Попытаемся вначале выяснить не что такое электрический заряд, а что скрывается за утверждением данное тело или частица имеют, электрический заряд. Это почти одно и то же, но не совсем, и второе проще для понимания.

Вы знаете, что все тела построены из мельчайших, неделимых на более простые (насколько сейчас науке известно) частиц, которые поэтому называют элементарными. Все элементарные частицы имеют массу и благодаря этому притягиваются друг к другу. Согласно закону всемирного тяготения сила притяжения сравнительно медленно убывает по мере увеличения расстояния между ними: обратно пропорционально квадрату расстояния. Кроме того, большинство элементарных частиц, хотя и не все, обладают способностью взаимодействовать друг с другом с силой, которая также убывает обратно пропорционально квадрату расстояния, но эта сила в огромное число раз превосходит силу тяготения. Так, в атоме водорода, схематически изображенном на рисунке 1, электрон притягивается к ядру (протону) с силой, в 1039 раз превышающей силу гравитационного притяжения.

Рис. 1

Если частицы взаимодействуют друг с другом с силами, которые медленно уменьшаются с увеличением расстояния и во много раз превышают силы всемирного тяготения, то говорят, что эти частицы имеют электрический заряд. Сами частицы называются заряженными. Бывают частицы без электрического заряда, но не существует электрического заряда без частицы.

Взаимодействия между заряженными частицами носят название электромагнитных. Когда мы говорим, что электроны и протоны электрически заряжены, то это означает, что они способны к взаимодействиям определенного типа (электромагнитным), и ничего более. Отсутствие заряда у частиц означает, что подобных взаимодействий она не обнаруживает. Электрический заряд определяет интенсивность электромагнитных взаимодействий, подобно тому как масса определяет интенсивность гравитационных взаимодействий. Электрический заряд — вторая (после массы) важнейшая характеристика элементарных частиц, определяющая их поведение в окружающем мире.

Электрический заряд элементарной частицы — это не особый «механизм» в частице, который можно было бы снять с нее, разложить на составные части и снова собрать. Наличие электрического заряда у электрона и других частиц означает лишь существование определенных взаимодействий между ними. Но мы, в сущности, ничего не знаем о заряде, если не знаем законов этих взаимодействий. Знание законов взаимодействий должно входить в наши представления о заряде. Законы эти непросты, изложить их в нескольких словах невозможно. Вот почему нельзя дать достаточно убедительное краткое определение понятия «электрический заряд».

Два знака электрических зарядов

В природе имеются частицы с зарядами противоположных знаков. Заряд протона называется положительным, а электрона — отрицательным. Положительный знак заряда у частицы не означает, конечно, наличия у нее особых достоинств. Введение зарядов двух знаков просто выражает тот факт, что заряженные частицы могут как притягиваться, так и отталкиваться. При одинаковых знаках заряда частицы отталкиваются, а при разных — притягиваются.

Никакого объяснения причин существования двух видов электрических зарядов сейчас нет. Во всяком случае, никаких принципиальных различий между положительными и отрицательными зарядами не обнаруживается. Если бы знаки электрических зарядов частиц изменились на противоположные, то характер электромагнитных взаимодействий в природе не изменился бы.

Положительные и отрицательные заряды очень хорошо скомпенсированы во Вселенной. И если Вселенная конечна, то ее полный электрический заряд, по всей вероятности, равен нулю.

Элементарный заряд

Кроме электронов и протонов, есть еще несколько типов элементарных частиц. Но только электроны и протоны могут неограниченно долго существовать в свободном состоянии.

Остальные же заряженные частицы живут менее миллионных долей секунды. Они рождаются при столкновениях быстрых элементарных частиц и, просуществовав ничтожно мало, распадаются, превращаясь в другие частицы. С этими частицами вы познакомитесь в дальнейшем.

К частицам, не имеющим электрического заряда, относится нейтрон. Его масса лишь незначительно превышает массу протона. Нейтроны вместе с протонами входят в состав атомных ядер.

Наиболее замечательным является то, что электрический заряд всех элементарных частиц строго одинаков по модулю. Существует минимальный заряд, называемый элементарным, которым обладают все заряженные элементарные частицы. Заряд может быть положительным, как у протона, или отрицательным, как у электрона, но модуль заряда во всех случаях один и тот же.

Равенство зарядов элементарных частиц проверено сейчас экспериментально с фантастической точностью. Так, заряд протона равен заряду электрона с погрешностью не более 10-20. А ведь электрон и протон во всех прочих отношениях радикально отличаются друг от друга. Они имеют различные размеры и массы; электрон в отличие от протона не участвует в сильных взаимодействиях.

Отделить часть заряда, например, у электрона невозможно. Это, пожалуй, самое удивительное. Никакая современная теория не может объяснить, почему заряды всех частиц одинаковы, и не в состоянии вычислить значение минимального электрического заряда. Оно определяется экспериментально с помощью различных опытов. О них мы расскажем в дальнейшем.

Кварки

В 60-е гг., после того как число вновь открытых элементарных частиц стало угрожающе расти, была выдвинута гипотеза о том, что все сильно взаимодействующие частицы являются составными. Более фундаментальные частицы были названы кварками.

Поразительным оказалось то, что кварки должны иметь дробный электрический заряд: 1/3 и 2/3 элементарного заряда. Для построения протонов и нейтронов достаточно двух сортов кварков. А максимальное их число, по-видимому, не превышает шести.

Кварки в свободном состоянии искали повсюду: в материковых породах, отложениях на дне океанов, в лунном грунте, но не нашли. Тем не менее экспериментальные доказательства кварковой структуры протонов и нейтронов были получены. В настоящее время считается, что межкварковые силы не убывают с расстоянием. Поэтому вылет кварков из протонов и других частиц невозможен ни при каких условиях.

Закон сохранения электрического заряда

Электрический заряд сохраняется для замкнутой системы, т. е. для системы, в которую не входят извне и не выходят наружу заряженные частицы.

Электрический заряд имеют элементарные частицы. Если бы число элементарных частиц сохранялось, то закон сохранения заряда был бы тривиальным следствием неизменности элементарных частиц. Однако в действительности закон сохранения заряда имеет гораздо более глубокий смысл из-за того, что элементарные частицы способны превращаться друг в друга и число их не остается неизменным. В дальнейшем об этих превращениях будет подробно рассказано.

Вряд ли можно даже приблизительно назвать число превращений элементарных частиц, которые наблюдались в лабораториях всех стран мира. Наверняка это число превышает многие миллиарды. И всегда при рождении заряженных частиц наблюдается появление пары частиц с зарядами противоположного знака. На рисунке 2 показана фотография рождения пары элементарных частиц: положительно заряженной (позитрона е+) и отрицательной (электрона е-).

Рис. 2

Может наблюдаться и одновременное рождение нескольких таких пар. При распаде электрически заряженной частицы в продуктах ее распада обязательно обнаруживается новая элементарная частица с зарядом того же знака. Исчезают заряженные частицы, превращаясь в нейтральные, тоже только парами.

Все эти факты не оставляют сомнений в строгом выполнении закона сохранения электрического заряда. В замкнутой системе алгебраическая сумма зарядов всех частиц остается неизменной.

Причина сохранения электрического заряда до сих пор пока неизвестна.

Рейтинг@Mail.ru