Физика

Предыдущая страница Физика Следующая страница

Электронная эмиссия

В узлах кристаллической решетки металлов находятся положительные ионы, а между ними свободно движутся электроны. Они как бы плавают по всему объему проводника, так как силы притяжения к положительным ионам решетки, действующие на свободные электроны, находящиеся внутри металла, в среднем взаимно уравновешиваются. Действие сил притяжения со стороны положительных ионов на электроны мешает последним выйти за пределы поверхности металла. Лишь наиболее быстрые электроны могут преодолеть это притяжение и вылететь из металла. Однако совсем покинуть металл электрон не может, так как притягивается положительным поверхностным ионом и тем зарядом, который возник в металле в связи с потерей электрона. Равнодействующая этих сил притяжения не равна нулю, а направлена внутрь металла перпендикулярно его поверхности (рис. 1).

Равнодействующая сил притяжения

Рис. 1

Через некоторое время электрон под действием этих сил может возвратиться в металл. Среди электронов, находящихся вблизи поверхности металла, найдется большое число таких, которые временно будут покидать металл, а затем возвращаться обратно. Этот процесс напоминает испарение жидкости. В конце концов устанавливается динамическое равновесие между покидающими и возвращающимися электронами. Таким образом, на границе металла с вакуумом возникает двойной слой электрических зарядов, поле которого подобно полю плоского конденсатора. Электрическое поле этого слоя можно считать однородным (рис. 2). Разность потенциалов в этом слое называется контактной разностью потенциалов между металлом и вакуумом.

Контактная разность потенциалов между металлом и вакуумом

Рис. 2

Этот двойной электрический слой не создает поля во внешнем пространстве, но препятствует выходу электронов из металла.

Как показывают расчеты и специально поставленные опыты, толщина этого слоя мала и равна примерно 10-10 м.

Таким образом, чтобы покинуть металл и уйти в окружающую среду, электрон должен совершить работу Aв против сил притяжения со стороны положительного заряда металла и против сил отталкивания от отрицательно заряженного электронного облака. Она приблизительно равна Aв = e, где e — заряд электрона. Для этого электрон должен обладать достаточной кинетической энергией.

Минимальную работу Aв, которую должен совершить электрон за счет своей кинетической энергии для того, чтобы выйти из металла и не вернуться в него, называют работой выхода.

Работа выхода зависит только от рода металла и его чистоты. Работу выхода принято измерять в электронвольтах (эВ).

Для чистых металлов Aв составляет несколько электронвольт. Так, например, для цезия ее значение равно 1,81 эВ, для платины 6,27 эВ.

Выход свободных электронов из металла называется эмиссией электронов. При нормальных внешних условиях электронная эмиссия выражена слабо, так как средняя кинетическая энергия хаотического теплового движения большинства свободных электронов в металлах гораздо меньше работы выхода. Для повышения интенсивности эмиссии следует увеличить кинетическую энергию свободных электронов до значений, равных или больших значения работы выхода. Этого можно достигнуть различными способами. Во-первых, созданием электрического поля очень большой напряженности (E ~ 106 В/см), способного вырвать электроны из металла, — холодная эмиссия. Такая эмиссия используется в электронных микропроекторах. Во-вторых, бомбардировкой металла электронами, предварительно разогнанными электрическим полем до очень большой скорости, — вторичная электронная эмиссия. В-третьих, интенсивным освещением поверхности металла — фотоэмиссия. На явлении фотоэмиссии основан внешний фотоэффект и устройство вакуумного фотоэлемента. В-четвертых, нагревание металла — термоэлектронная эмиссия. Электроны, испускаемые нагретым телом, называются термоэлектронами, а само это тело — эмиттером.


Рейтинг@Mail.ru