Учебник для 11 класса

Физика

       

§ 5.1. Связь между переменным электрическим и переменным магнитным полями

  • Колебания заряда и силы тока в колебательном контуре сопровождаются колебаниями напряженности электрического поля и магнитной индукции в окружающем контур пространстве. Подобно механическим колебаниям в среде (газе, жидкости, твердом теле), распространяющимся в пространстве с течением времени, колебания электромагнитного поля тоже распространяются в пространстве. Только это происходит не в какой-либо среде, а в вакууме. Среда влияет на распространение колебаний, но не является необходимой для их существования.

О симметрии

Мы уже знаем, что в явлении электромагнитной индукции Максвелл усмотрел порождение вихревого электрического поля переменным магнитным полем. Следующий и уже последний шаг в открытии основных свойств электромагнитного поля был им сделан без какой-либо опоры на эксперимент.

Точно неизвестно, какими соображениями руководствовался при этом Максвелл. Это могли быть те же самые соображения, которые заставили строителей Аничкова моста в Санкт-Петербурге поставить фигуры укрощаемых лошадей по обе стороны дороги; те же соображения, которые не позволяют вам перегружать вещами одну половину комнаты за счет другой. Это не что иное, как соображения симметрии, но только симметрии не в узком геометрическом смысле, а понимаемой более широко.

Свойства симметрии глубоко заложены в природе, и, по-видимому, именно поэтому симметрия воспринимается нами как необходимая гармония окружающего мира. В электромагнитных явлениях, конечно, речь идет не о той внешней красоте и изяществе, которая может быть присуща тому, что мы наблюдаем непосредственно с помощью органов чувств. Здесь речь может идти о внутренней стройности, гармоничности и единстве, которую открывает природа перед человеком, стремящимся постичь ее изначальные законы. Чувствуя эту гармонию в природе, человек, естественно, стремится усмотреть ее и там, где факты пока еще не демонстрируют ее с полной наглядностью.

Возникновение магнитного поля при изменении электрического поля

Переменное магнитное поле порождает электрическое поле с замкнутыми силовыми линиями. При изменении со временем магнитной индукции В возникает электрическое поле, линии напряженности которого охватывают линии магнитной индукции (рис. 5.1, а). Чем быстрее меняется магнитная индукция, тем больпхе напряженность электрического поля.

Рис. 5.1

При возрастании магнитной индукции направление напряженности образует левый винт с направлением вектора .

Итак, магнитное поле порождает электрическое. Не существует ли в природе обратного процесса, когда переменное электрическое поле, в свою очередь, порождает магнитное? Это предположение, диктуемое соображениями симметрии, составляет основу гипотезы Максвелла.

Максвелл допустил, что такого рода процесс реально происходит в природе. Во всех случаях, когда электрическое поле изменяется со временем, оно порождает магнитное поле. Линии магнитной индукции этого поля охватывают линии напряженности электрического поля (рис. 5.1, б) подобно тому, как линии напряженности электрического поля охватывают линии индукции переменного магнитного поля. Но только при возрастании напряженности электрического поля направление вектора индукции возникающего магнитного поля образует правый винт с направлением вектора . Глубокий смысл замены левого винта в явлении электромагнитной индукции правым мы выясним в дальнейшем. (Если, напротив, магнитное поле убывает, то линии напряженности образуют правый винт с линиями индукции , а при ослаблении электрического поля линии индукции образуют левый винт с линиями напряженности .)

Утверждение Максвелла некоторое время оставалось не чем иным, как гипотезой. Причем гипотезой, которую мы сейчас с полным правом можем назвать гениальной. Ее справедливость была доказана экспериментальным обнаружением электромагнитных волн. Электромагнитные волны существуют только потому, что переменное магнитное поле порождает переменное электрическое поле, которое, в свою очередь, порождает магнитное поле и т. д.

Ток смещения

Переменное электрическое поле в пустоте или внутри диэлектрика было названо Максвеллом током смещения. Название «ток» было применено потому, что это поле порождает магнитное поле точно так же, как обычный ток. Добавка «смещения», с одной стороны, говорит нам, что это не обычный ток, а нечто специфическое, а с другой стороны, напоминает о том отдаленном времени, когда с изменением электрического поля в вакууме связывалось смещение частиц гипотетической среды — эфира.

После введения представлений о токе смещения появилась возможность любой электрический ток рассматривать как замкнутый. Так, например, в колебательном контуре ток проводимости в катуп1ке (упорядоченное движение электронов) сменяется током смещения между обкладками конденсатора (изменяющимся со временем электрическим полем, рис. 5.2). Причем переменное электрическое поле создает такое же магнитное поле, как если бы между обкладками существовал ток проводимости, равный току в катупхке.

Рис. 5.2

Сейчас может показаться, что в гипотезе Максвелла нет ничего необычного. Не мог ли ее высказать любой ученый? Нет! Не надо забывать, что сама возможность гипотезы о возникновении магнитного поля при изменении электрического появилась лишь после объяснения электромагнитной индукции на основе представлений о поле. И это в то время, когда большинство известных ученых вообще не придавали самому понятию поля сколько-нибудь серьезного значения и когда до момента экспериментального доказательства его существования оставалось еще несколько десятков лет.

Максвелл не только высказал гипотезу, но и сформулировал точный количественный закон, определяющий значение магнитной индукции в зависимости от скорости изменения напряженности электрического поля (ток смещения, по Максвеллу, пропорционален скорости изменения напряженности электрического поля)*.

Можно только изумляться той исключительной последовательности и настойчивости, той уверенности в справедливости своих идей, которые проявил Максвелл при формулировке законов электромагнитного поля. Уже с самого начала, когда Максвелл занялся электродинамикой после успешной работы в области молекулярно-кинетической теории строения вещества, он сразу решил читать только экспериментальные работы и не читать теоретических, чтобы ничего предвзятого не возникало в суждениях о законах этих явлений. Такой способ действия оказался удивительно плодотворным и помог Максвеллу выработать собственную цельную точку зрения на электромагнитные процессы**.

Максвелл смело положил в основу теории объект, экспериментальное существование которого не было доказано, — поле. И далее, идя шаг за шагом, опираясь на установленные опытным путем закономерности (законы Кулона, Ампера, Био—Савара—Лапласа и закон электромагнитной индукции Фарадея), он пришел к конечной цели. Гипотеза о токах смещения была последним принципиальным звеном. Здесь Максвелл наделил гипотетический объект новым гипотетическим свойством, не имея на то, в отличие от предыдущих случаев, прямых экспериментгшьных указаний.


* Надо отметить, что без введения понятия тока смещения система уравнений Максвелла для электромагнитного поля не удовлетворяла бы закону сохранения заряда.

** Вряд ли такой способ может быть рекомендован сейчас для всеобщего употребления. Во-первых, в то время происходило рождение совершенно новой науки — электродинамики. Рождение нового на месте, где раньше была пустота. И во-вторых, не каждый человек, к сожалению. Максвелл.

Рейтинг@Mail.ru