Естествознание
10 класс

§ 38. Энергетика живой клетки

Преизобильное ращение тучных дерев,
которые на бесплодном песку корень
свой утвердили, ясно изъявляет, что
жирными листами жирный тук из воздуха
впитывают...
М. В. Ломоносов

Как энергия запасается в клетке? Что такое метаболизм? В чем суть процессов гликолиза, брожения и клеточного дыхания? Какие процессы проходят на световой и темновой фазах фотосинтеза? Как связаны процессы энергетического и пластического обмена? Что представляет собой хемосинтез?

Урок-лекция

Способность преобразовывать одни виды энергии в другие (энергию излучения в энергию химических связей, химическую энергию в механическую и т. п.) относится к числу фундаментальных свойств живого. Здесь мы подробно рассмотрим, каким образом реализуются эти процессы у живых организмов.

АТФ - ГЛАВНЫЙ ПЕРЕНОСЧИК ЭНЕРГИИ В КЛЕТКЕ. Для осуществления любых проявлений жизнедеятельности клеток необходима энергия. Автотрофные организмы получают исходную энергию от Солнца в ходе реакций фотосинтеза, гетеротрофные же в качестве источника энергии используют органические соединения, поступающие с пищей. Энергия запасается клетками в химических связях молекул АТФ (аденозинтрифосфат), которые представляют собой нуклеотид, состоящий из трех фосфатных групп, остатка сахара (рибозы) и остатка азотистого основания (аденина) (рис. 52).

Рис. 52. Молекула АТФ

Связь между фосфатными остатками получила название макроэргической, поскольку при ее разрыве выделяется большое количество энергии. Обычно клетка извлекает энергию из АТФ, отщепляя только концевую фосфатную группу. При этом образуется АДФ (аденозиндифосфат), фосфорная кислота и освобождается 40 кДж/моль:

Молекулы АТФ играют роль универсальной энергетической разменной монеты клетки. Они поставляются к месту протекания энергоемкого процесса, будь то ферментативный синтез органических соединений, работа белков — молекулярных моторов или мембранных транспортных белков и др. Обратный синтез молекул АТФ осуществляется путем присоединения фосфатной группы к АДФ с поглощением энергии. Запасание клеткой энергии в виде АТФ осуществляется в ходе реакций энергетического обмена. Он тесно связан с пластическим обменом, в ходе которого клетка производит необходимые для ее функционирования органические соединения.

ОБМЕН ВЕЩЕСТВ И ЭНЕРГИИ В КЛЕТКЕ (МЕТАБОЛИЗМ). Метаболизм — совокупность всех реакций пластического и энергетического обмена, связанных между собой. В клетках постоянно идет синтез углеводов, жиров, белков, нуклеиновых кислот. Синтез соединений всегда идет с затратой энергии, т. е. при непременном участии АТФ. Источниками энергии для образования АТФ служат ферментативные реакции окисления поступающих в клетку белков, жиров и углеводов. В ходе этого процесса высвобождается энергия, которая аккумулируется в АТФ. Особую роль в энергетическом обмене клетки играет окисление глюкозы. Молекулы глюкозы претерпевают при этом ряд последовательных превращений.

Первый этап, получивший название гликолиз, проходит в цитоплазме клеток и не требует кислорода. В результате последовательных реакций с участием ферментов глюкоза распадается на две молекулы пировиноградной кислоты. При этом расходуются две молекулы АТФ, а высвобождающейся при окислении энергии достаточно для образования четырех молекул АТФ. В итоге энергетический выход гликолиза невелик и составляет две молекулы АТФ:

С6Н1206 → 2С3Н403 + 4Н+ + 2АТФ

В анаэробных условиях (при отсутствии кислорода) дальнейшие превращения могут быть связаны с различными типами брожений.

Всем известно молочнокислое брожение (скисание молока), которое происходит благодаря деятельности молочнокислых грибков и бактерий. По механизму оно сходно с гликолизом, только окончательным продуктом здесь является молочная кислота. Этот тип окисления глюкозы происходит в клетках при дефиците кислорода, например в интенсивно работающих мышцах. Близко по химизму к молочнокислому и спиртовое брожение. Различие заключается в том, что продуктами спиртового брожения являются этиловый спирт и углекислый газ.

Следующий этап, в ходе которого пировиноградная кислота окисляется , до углекислого газа и воды, получил название клеточное дыхание. Связанные с дыханием реакции проходят в митохондриях растительных и животных клеток, и только при наличии кислорода. Это ряд химических превращений до образования конечного продукта — углекислого газа. На различных этапах такого процесса образуются промежуточные продукты окисления исходного вещества с отщеплением атомов водорода. При этом освобождается энергия, которая «консервируется» в химических связях АТФ, и образуются молекулы воды. Становится понятным, что именно для того, чтобы связать отщепленные атомы водорода, и требуется кислород. Данный ряд химических превращений достаточно сложный и происходит с участием внутренних мембран митохондрий, ферментов, белков-переносчиков.

Клеточное дыхание имеет очень высокую эффективность. Происходит синтез 30 молекул АТФ, еще две молекулы образуются при гликолизе, и шесть молекул АТФ — как результат превращений продуктов гликолиза на мембранах митохондрий. Всего в результате окисления одной молекулы глюкозы образуются 38 молекул АТФ:

C6H12O6 + 6Н20 → 6CO2 + 6H2O + 38АТФ

В митохондриях происходят конечные этапы окисления не только сахаров, но также белков и липидов. Эти вещества используются клетками, главным образом когда подходит к концу запас углеводов. Вначале расходуется жир, при окислении которого выделяется существенно больше энергии, чем из равного объема углеводов и белков. Поэтому жир у животных представляет собой основной «стратегический резерв» энергетических ресурсов. У растений же роль энергетического резерва играет крахмал. При хранении он занимает значительно больше места, чем энергетически эквивалентное ему количество жира. Для растений это не служит помехой, поскольку они неподвижны и не носят, как животные, запасы на себе. Извлечь же энергию из углеводов можно гораздо быстрее, чем из жиров. Белки выполняют в организме многие важные функции, поэтому вовлекаются в энергетический обмен только при исчерпании ресурсов сахаров и жиров, например при длительном голодании.

ФОТОСИНТЕЗ. Фотосинтез — это процесс, в ходе которого энергия солнечных лучей преобразуется в энергию химических связей органических соединений. В растительных клетках связанные с фотосинтезом процессы протекают в хлоропластах. Внутри этой органеллы находятся системы мембран, в которые встроены пигменты, улавливающие лучистую энергию Солнца. Основной пигмент фотосинтеза — хлорофилл, который поглощает преимущественно синие и фиолетовые, а также красные лучи спектра. Зеленый свет при этом отражается, поэтому сам хлорофилл и содержащие его части растений кажутся зелеными.

В фотосинтезе выделяют две фазы — световую и темновую (рис. 53). Собственно улавливание и преобразование лучистой энергии происходит во время световой фазы. При поглощении квантов света хлорофилл переходит в возбужденное состояние и становится донором электронов. Его электроны передаются от одного белкового комплекса к другому по цепи переноса электронов. Белки этой цепи, как и пигменты, сосредоточены на внутренней мембране хлоропластов. При переходе электрона по цепи переносчиков он теряет энергию, которая используется для синтеза АТФ. Часть возбужденных светом электронов используется для восстановления НДФ (никотинамидадениндинуклеотифосфат), или НАДФ·Н.

Рис. 53. Продукты реакций световой и темновой фаз фотосинтеза

Под действием солнечного света в хлоропластах происходит также расщепление молекул воды - фотолиз; при этом возникают электроны, которые возмещают потери их хлорофиллом; в качестве побочного продукта при этом образуется кислород:

Таким образом, функциональный смысл световой фазы заключается в синтезе АТФ и НАДФ·Н путем преобразования световой энергии в химическую.

Для реализации темновой фазы фотосинтеза свет не нужен. Суть проходящих здесь процессов заключается в том, что полученные в световую фазу молекулы АТФ и НАДФ·Н используются в серии химических реакций, «фиксирующих» СОг в форме углеводов. Все реакции темновой фазы осуществляются внутри хлоропластов, а освобождающиеся при «фиксации» углекислоты АДФ и НАДФ вновь используются в реакциях световой фазы для синтеза АТФ и НАДФ·Н.

Суммарное уравнение фотосинтеза имеет следующий вид:

ВЗАИМОСВЯЗЬ И ЕДИНСТВО ПРОЦЕССОВ ПЛАСТИЧЕСКОГО И ЭНЕРГЕТИЧЕСКОГО ОБМЕНА. Процессы синтеза АТФ происходят в цитоплазме (гликолиз), в митохондриях (клеточное дыхание) и в хлоропластах (фотосинтез). Все осуществляющиеся в ходе этих процессов реакции — это реакции энергетического обмена. Запасенная в виде АТФ энергия расходуется в реакциях пластического обмена для производства необходимых для жизнедеятельности клетки белков, жиров, углеводов и нуклеиновых кислот. Заметим, что темновая фаза фотосинтеза — это цепь реакций , пластического обмена, а световая — энергетического.

Взаимосвязь и единство процессов энергетического и пластического обмена хорошо иллюстрирует следующее уравнение:

При чтении этого уравнения слева направо получается процесс окисления глюкозы до углекислого газа и воды в ходе гликолиза и клеточного дыхания, связанный с синтезом АТФ (энергетический обмен). Если же прочесть его справа налево, то получается описание реакций темновой фазы фотосинтеза, когда из воды и углекислоты при участии АТФ синтезируется глюкоза (пластический обмен).

ХЕМОСИНТЕЗ. К синтезу органических веществ из неорганических, кроме фотоавтотрофов, способны и некоторые бактерии (водородные, нитрифицирующие, серобактерии и др.). Они осуществляют этот синтез за счет энергии, выделяющейся при окислении неорганических веществ. Их называют хемоавтотрофами. Эти хемосинтезирующие бактерии играют важную роль в биосфере. Например, нитрифицирующие бактерии переводят недоступные для усвоения растениями соли аммония в соли азотной кислоты, которые хорошо ими усваиваются.

Клеточный метаболизм составляют реакции энергетического и пластического обмена. В ходе энергетического обмена происходит образование органических соединений с макроэргическими химическими связями — АТФ. Необходимая для этого энергия поступает от окисления органических соединений в ходе анаэробных (гликолиз, брожение) и аэробных (клеточное дыхание) реакций; от солнечных лучей, энергия которых усваивается на световой фазе (фотосинтез); от окисления неорганических соединений (хемосинтез). Энергия АТФ расходуется на синтез необходимых клетке органических соединений в ходе реакций пластического обмена, к которым относятся и реакции темновой фазы фотосинтеза.

  • В чем заключаются различия между пластическим и энергетическим обменом?
  • Как преобразуется энергия солнечных лучей в световую фазу фотосинтеза? Какие процессы проходят в темновую фазу фотосинтеза?
  • Почему фотосинтез называют процессом отражения планетно-космического взаимодействия?

Рейтинг@Mail.ru