Предыдущая страница Биология. 10-11 классы Следующая страница

Биология

Учебник для 10-11 классов

§ 40. Успехи селекции

Увеличение производства сельскохозяйственной продукции как в мире, так и в нашей стране базируется на использовании потенциала сортов растений и пород животных, полученных в процессе селекции. Другими словами, наше благополучие напрямую связано с уровнем развития и эффективностью селекции, что и определяет ее особую значимость для человечества.

Хотя человек и освоил под сельское хозяйство всего 10% суши нашей планеты, но увеличить значительно долю пахотных земель сегодня невозможно, так как все доступные на сегодня резервы пригодных для сельского хозяйства земель фактически исчерпаны. Остается одно — значительно увеличить отдачу используемых земель, резко повысить продуктивность растений и животных.

За последние 100 лет селекция достигла поразительных успехов. Урожайность зерновых повысилась на порядок. Сегодня в развитых странах получают до 100 ц/га пшеницы, риса, кукурузы. По новым сортам картофеля зарегистрирован рекордный урожай почти в 1000 ц/га, т. е. в четыре раза выше среднего по возделываемым сортам.

Подобная картина наблюдается и по другим культурам. Сравнение средних и рекордных урожаев свидетельствует лишь о тех резервах, которые заложены в новых сортах и могут быть реализованы при совершенствовании технологий возделывания растений. Это также свидетельствует о том, что селекция имеет огромные перспективы в деле наращивания продовольственного потенциала.

Мощное развитие животноводства за последние десятилетия привело к появлению выдающихся пород животных. Продуктивность молочного скота у некоторых пород достигла 8—10 тыс. кг молока в год. Новый сибирский тип российской мясошерстной породы овец отличается высокой мясной и шерстной продуктивностью. Средняя масса баранов составляет 110—130 кг, средний настриг шерсти в чистом волокне 6—8 кг. Лучшие породы кур дают по 400 яиц в год на несушку, а бройлерные цыплята достигают массы 2,5—3 кг за семь недель.

Комплекс селекционных приемов, используемых в молочном скотоводстве, называется крупномасштабной селекцией. Она включает сбор всей селекционно-генетической информации, составление оптимальной стратегии селекционной работы, оценку генотипов лучших животных, создание банков замороженной спермы от элитных быков, отбор и эффективное использование лучших коров. Методы гормональных воздействий и трансплантации позволяют получать от лучших коров десятки зигот в год и выращивать их в коровах, имеющих более низкую племенную ценность. Вся система управляется из единого информационного центра. Такая широкомасштабная селекция позволяет повышать продуктивность породы на 1—2% в год. Это очень высокий показатель для таких медленно размножающихся животных, как крупный рогатый скот.

Селекционер, создающий новые сорта растений и породы животных, — это прежде всего ученый, в совершенстве владеющий знаниями генетики, систематики, физиологии и многих других наук. Кроме того, это, образно говоря, художник, создающий вначале абстрактный образ будущего сорта растений или породы животных и только после этого приступающий к его реальному воплощению. Сочетание таких двух качеств в одном человеке является довольно редким явлением, поэтому выдающихся селекционеров, создавших лучшие сорта растений или породы животных, знают повсеместно. Наиболее известные российские селекционеры-растениеводы: А. П. Шехурдин и В. Н. Мамонтова — по яровой пшенице, И. В. Мичурин — по плодовым растениям, П. П. Лукьяненко и В. Н. Ремесло — по озимой пшенице, М. И. Хаджинов и Г. С. Галеев — по кукурузе, В. С. Пустовойт — по подсолнечнику, М. Ф. Иванов, Н. С. Батурин, В. А. Струнников внесли крупный вклад в создание новых пород животных.

Новейшие методы селекции. Бурное развитие новых методов исследований в генетике, расширение и углубление наших представлений о структуре и законах организации наследственного аппарата клетки обусловили создание и разработку принциально новых методов селекции. Появились такие направления современной генетики, как клеточная инженерия и генная инженерия. Принципиальное отличие данных методов от традиционно используемых в селекции, например мутагенеза, состоит в целенаправленном расширении границ изменчивости генотипа, в планируемом разнообразии исходного материала для селекции. Наибольшее применение эти современные методы получили в селекции растений.

Клеточная инженерия и клонирование связаны с культивированием отдельных клеток или тканей на специальных искусственных средах. Если взять отдельные клетки растений и пересадить их на специальные среды, содержащие минеральные соли, аминокислоты, гормоны и другие питательные компоненты, то они способны расти. Это значит, что в таких изолированных от организма тканях и клетках продолжаются клеточные деления. Но самым важным оказалось то, что отдельные растительные клетки в таких искусственных условиях обладают способностью к формированию полноценных растений. Эта их особенность была использована для селекции.

Если необходимо, например, получить солеустойчивые растения, то для культивирования клеток растений составляется специальная питательная среда с повышенным содержанием солей и тысячи растительных клеток высеваются на эти среды в чашках Петри. Большинство таких клеток, не выдерживая высоких концентраций солей, гибнет, но отдельные выживают, и из них, как наиболее солеустойчивых, могут регенерировать целые растения. Это один из примеров селекции на клеточном уровне, когда отбору подвергаются не целые растения, а клетки, из которых потом воспроизводятся растения. Преимущества клеточной селекции очевидны, так как в объеме одной чашки Петри можно поместить тысячи клеток, что во много раз повышает возможности отбора.

В отличие от растений у животных такой способностью расти в искусственной среде и давать начало целым организмам обладают только особые стволовые клетки, в особенности эмбриональные стволовые клетки. Первое в мире клонированное животное — овца Долли — было получено в Шотландии в 1997 г. Для этого ученые перенесли ядро стволовой клетки, взятой из молочной железы, в неоплодотворенную яйцеклетку овцы, из которой было предварительно удалено собственное ядро. Затем эту яйцеклетку перенесли в матку овцы, и в положенный срок родилось первое клонированное животное. В настоящее время получены клоны мышей, коров, свиней, кроликов и других животных (рис. 51).

Основные этапы клонирования животных

Рис. 51. Основные этапы клонирования животных

Генная инженерия. Под генной инженерией обычно понимают искусственный перенос нужных генов от одного вида живых организмов (бактерий, животных, растений) в другой вид, часто очень далекий по своему происхождению. Чтобы осуществить перенос генов (или трансгенез), необходимо выполнить следующие сложные операции:

  • создание специальных генетических конструкций (векторов), в составе которых намеченные гены будут внедряться в геном другого вида. Такие конструкции, кроме самого гена, должны содержать все необходимое для управления его работой (в частности, промоторы) и гены-«репортеры», которые будут сообщать, что перенос успешно осуществлен;
  • внедрение генетических векторов сначала в клетку, а затем в геном другого вида и выращивание измененных клеток в целые организмы.

Растения и животные, геном которых изменен в результате таких генно-инженерных операций, получили название трансгенных.

Для более наглядного представления рассмотрим, как ученым из разных стран, в том числе и нашей, удалось с помощью генно-инженерных методов создать ценные для селекции новые формы растений.

В природе существует бактерия Bacillus thuringiensis, вырабатывающая белок, называемый эндотоксином. При попадании этой бактерии в желудок насекомых — вредителей сельскохозяйственных растений эндотоксин вызывает разрушение стенки желудка и гибель насекомого-вредителя. Такое свойство белка генные инженеры решили использовать для создания форм сельскохозяйственных растений, устойчивых к насекомым-вредителям. Они выделили из бактериальной ДНК ген, кодирующий эндотоксин. Этот ген был встроен в состав природных генетических векторов — плазмид, присутствующих в клетках почвенной бактерии Agrobacterium tumefaciens. Этой бактерией были заражены кусочки растительной ткани, выращиваемой на питательной среде. Через некоторое время плазмиды, несущие ген белка-токсина, внедрились в растительные клетки, и ген встроился в ДНК растений. Затем кусочки растительной ткани перенесли на питательную среду другого состава, которая обеспечивает рост и развитие полноценных растений. В конце концов такие растения были выращены и выяснилось, что если на их листья посадить гусениц насекомых-вредителей, то, отведав растительной ткани с белком-токсином, гусеницы погибают. Важно, что токсин оказался гибельным только для насекомых и совершенно безвредным для человека и сельскохозяйственных животных.

Описанным выше путем к настоящему моменту удалось получить формы картофеля, томатов, табака, рапса, устойчивые к разнообразным сельскохозяйственным вредителям. При этом отпадает необходимость во внесении химических инсектицидов, от которых страдают не только люди, но и многие животные: насекомые, звери и птицы. Специалисты в области молекулярной биологии передали винограду ген морозоустойчивости от дикорастущего родственника капусты брокколи. Получение морозостойкого сорта заняло всего год. Обычно выведение нового сорта винограда занимает от 25 до 35 лет, при этом традиционные методы не позволяют переносить гены от других растений, не относящихся к роду винограда. Трансгенные растения выращивают во многих странах мира. На первом месте по размеру посевных площадей под трансгенными растениями находятся США, Аргентина и Китай. Больше всего земли занимают трансгенные соя, кукуруза, хлопок, рапс и картофель.

Были разработаны и другие способы введения новой наследственной информации в клетки растений с использованием электрических разрядов и генной пушки, стреляющей частицами металла с нанесенными на них фрагментами ДНК.

Перенос новых генов в геном животных обеспечивается разными методами. Используется микроинъекция ДНК в ядро яйцеклетки. Вирусы могут переносить участки чужеродной ДНК в культивируемые эмбриональные стволовые клетки животных. Такие измененные стволовые клетки затем трансплантируют в развивающийся эмбрион и получают химерных животных. Химерами они называются потому, что часть их клеток происходит от собственных клеток эмбриона, а часть — от измененных трансплантированных клеток. Потомки трансплантированных клеток участвуют в формировании многих тканей и органов химерных животных, в том числе и половых клеток. Это открывает возможность получения пород трансгенных животных, несущих хозяйственно полезные признаки.


  1. Расскажите о методахклеточной инженерии. Какие результаты были получены при их применении?

Рейтинг@Mail.ru