Предыдущая страница Астрономия Следующая страница

Астрономия

Учебник для 10 класса

Методы изучения физической природы небесных тел

§13.1. Применение спектрального анализа

Методом, дающим ценные и наиболее разнообразные сведения о небесных светилах, является спектральный анализ. Он позволяет установить из анализа излучения качественный и количественный химический состав светила, его температуру, наличие магнитного поля, скорость движения по лучу зрения и многое другое.

Спектральный анализ основан на разложении белого света на составные части. Если узкий пучок света пустить на боковую грань трехгранной призмы, то, преломляясь в стекле по-разному, составляющие белый свет лучи дадут на экране радужную полоску, называемую спектром. В спектре все цвета расположены всегда в определенном порядке

Как известно, свет распространяется в виде электромагнитных волн. Каждому цвету соответствует определенная длина электромагнитной волны. Длина волны в спектре уменьшается от красных лучей к фиолетовым примерно от 0,7 до 0,4 мкм. За фиолетовыми лучами спектра лежат ультрафиолетовые лучи, не видимые глазом, но действующие на фотопластинку. Еще меньшую длину волны имеют рентгеновские лучи. Рентгеновское излучение небесных светил, важное для понимания их природы, атмосфера Земли задерживает. За красными лучами спектра находится область инфракрасных лучей. Они невидимы, но созданы специальные приемники инфракрасного излучения, например особым способом приготовленные фотопластинки. Под спектральными наблюдениями понимают обычно наблюдения в интервале от инфракрасных до ультрафиолетовых лучей.

Для изучения спектров применяют приборы, называемые спектроскопом и i>спектрографом. В спектроскоп спектр рассматривают, а спектрографом его фотографируют. Фотография спектра называется спектрограммой.

На рисунке 39 показано устройство спектрографа. Свет попадает через узкую щель на объектив, который посылает его параллельным пучком на одну или несколько призм. В призме свет разлагается на составные части и дает спектр. Его изображение строят линзой на фотопластинке и получают спектрограмму. В спектроскопе это изображение рассматривают через окуляр. В астрономических спектрографах, кроме призмы, используют также и дифракционную решетку, которая отражает свет и одновременно разлагает его в спектр.

Астрономия. Схема устройства призменного спектрографа

Рис. 39. Схема устройства призменного спектрографа.

Существуют следующие виды спектров.

Сплошной, или непрерывный, спектр в виде радужной полоски дают твердые и жидкие раскаленные тела (уголь, нить электролампы) и достаточно плотные массы газа.

Линейчатый спектр излучения дают разреженные газы и пары при сильном нагревании или под действием электрического разряда. Каждый газ излучает свет строго определенных длин волн и дает характерный для данного химического элемента линейчатый спектр. Сильные изменения состояния газа или условий его свечения, например нагрев или ионизация, вызывают определенные изменения в спектре данного газа.

Составлены таблицы с перечнем линий каждого газа и с указанием яркости каждой линии. Например, в спектре натрия особенно ярки две желтые линии.

Линейчатый спектр поглощения дают газы и пары, когда за ними находится яркий источник, дающий непрерывный спектр. Спектр поглощения представляет собой непрерывный спектр, перерезанный темными линиями, которые находятся в тех самых местах, где должны быть расположены яркие линии, присущие данному газу (рис. 40). Например, две темные линии поглощения натрия расположены в желтой части спектра (Вы можете сравнением легко отождествить линии водорода в спектрах Солнца и Сириуса, используя рисунок заднего форзаца.)

Астрономия. Сравнение спектра Солнца

Рис. 40. Сравнение спектра Солнца (вверху) с лабораторным спектром паров железа.

Изучение спектров позволяет производить анализ химического состава газов, излучающих или поглощающих свет Количество атомов или молекул, излучающих или поглощающих энергию, определяется по интенсивности линий. Чем больше атомов, тем ярче линия в спектре излучения или тем она темнее в спектре поглощения.

Солнце и звезды окружены газовыми атмосферами. Непрерывный спектр их видимой поверхности перерезан темными линиями поглощения, возникающими при прохождении излучения через атмосферу звезд. Поэтому спектры Солнца и звезд — это спектры поглощения (Рассмотрим изображения разных спектров на форзаце.)

Надо помнить, что спектральный анализ позволяет определять химический состав только самосветящихся или поглощающих излучение газов. Химический состав твердого тела при помощи спектрального анализа определить нельзя.

Скорости движения небесных светил относительно Земли по лучу зрения (лучевые скорости) определяются при помощи спектрального анализа на основании принципа Доплера — Физо: если источник света и наблюдатель сближаются, то длины волн, определяющие положения спектральных линий, укорачиваются, а при их взаимном удалении длины волн увеличиваются. Это явление выражается формулой:

Астрономия

где v — лучевая скорость относительного движения с ее знаком (минус при сближении), λ — нормальная длина волны света при неподвижном источнике, λ0 — длина волны при движении источника и с — скорость света. Иначе говоря, при сближении наблюдателя и источника света линии спектра смещаются к его фиолетовому, а при удалении — к красному концу.

Скорости движения тел на Земле могли бы вызвать лишь ничтожные смещения линий в спектрах тел, но и скорости небесных тел (обычно десятки и сотни км/с) вызывают смещения столь малые, что их можно измерить на спектрограмме только под микроскопом.

Получив спектрограмму светила, над ней и под ней впечатывают спектры сравнения от земного источника излучения, например от ртутной или неоновой лампы (рис. 41). Спектр сравнения для нас неподвижен, и относительно него можно определять сдвиг линий спектра звезды. Он обычно составляет сотые или десятые доли миллиметра на фотографии. Чтобы выяснить, какому изменению соответствует полученный на спектрограмме сдвиг, надо знать масштаб спектра — на сколько меняется длина волны, если мы продвигаемся вдоль спектра на 1 мм. Подстановка в формулу величин λ, λ0 и с = 300000 км/с позволяет определить v — лучевую скорость движения светила.

Астрономия. Смещение линии

Рис. 41. Смещение линии Hγ, в спектре одной из звезд при ее движении по лучу зрения. Сверху и снизу — лабораторные спектры сравнения ванадия. Над ними написаны длины волн в ангстремах (1А =0,0001 мкм).

Когда тело раскалено докрасна, в его сплошном спектре ярче всего красная часть. При дальнейшем нагревании наибольшая яркость в спектре переходит в желтую, потом в зеленую часть и т. д. Теория излучения света, проверенная на опыте, показывает, что распределение яркости вдоль сплошного спектра зависит от температуры тела. Зная эту зависимость, можно установить температуру Солнца и звезд. Температуру планет и температуру звезд определяют еще при помощи термоэлемента, помещенного в фокусе телескопа или специально созданных приемников инфракрасного излучения.

Итак, мы видим, что многие астрономические данные, например температура светил, определяются способами, проверяющими друг друга. Получаемые данные вполне достоверны. Они проверены многими учеными в разных странах.

  1. Длина волны, соответствующая линии водорода, в спектре звезды больше, чем в спектре, полученном в лаборатории. К нам или от нас движется звезда? Будет ли наблюдаться сдвиг линий спектра, если звезда движется поперек луча зрения?
  2. На фотографии спектра звезды ее линия смещена относительно своего нормального положения на 0,02 мм. На сколько изменилась длина волны, если в спектре расстояние в 1 мм соответствует изменению длины волны на 0,004 мкм (эта величина называется дисперсией спектрограммы)? С какой скоростью движется звезда? Нормальная длина волны 0,5 мкм = 5000 А (ангстрем) 1 А = 10-10 м.
  3. По рисунку 41 определите с помощью масштабной линейки дисперсию в ангстремах на 1 мм длины спектра в интервале длин волн 4261—4277 А. Измерьте, используя лупу, сдвиг центра линии HY в спектре звезды (самая широкая) относительно той же линии спектра сравнения. Вычислите по этому сдвигу линий лучевую скорость звезды.

Рейтинг@Mail.ru